Journal of the Indian Society of Agricultural Statistics

Vol. XVI]

[No. 1

YIELD TRENDS OF RICE AND WHEAT IN FIRST TWO FIVE-YEAR PLANS IN INDIA

BY V. G. PANSE

Institute of Agricultural Research Statistics

. 1. INTRODUCTION

COMPARABLE and reliable series of data on the yield of several food crops, based entirely on random sampling crop-cutting surveys, initiated by the Indian Council of Agricultural Research in 1943, have become available over a large part of the country. The value of these data, as perhaps the most critical indicator of the agricultural progress under the successive five-year plans, will increase steadily as years pass. The vield of rice and wheat which are the most important foodgrains on which the major part of plan efforts devoted to foodgrains, have been concentrated for improving their yield and for which the series was the longest, were examined by the author for the period 1946-47 to 1955-56 in an earlier article by the author.* These data extended over 65% of the area under each of these two crops in the country and covered the states of Uttar Pradesh, Bihar, West Bengal, Assam, Madhya Pradesh, Bombay, Andhra Pradesh and Madras for rice and Punjab, Uttar Pradesh, Bihar, Madhya Pradesh and Bombay for wheat. The main interest of the analysis was the comparison of average yield during the first five-year plan period, 1951-52 to 1955-56, with the average for the immediately preceding period of five years treated as a control. Results showed that the average yield per acre was higher by 5.4% for rice and 11.8% for wheat in the plan period than in the preceding quinquennium. The increase in rice yield was contributed by three states-Madras, Andhra Pradesh and West Bengal and that in wheat by all the five states, although the increase in Bihar was not

^{* &}quot;Recent Trends in the Yield of Rice and Wheat in India"—V. G. Panse, Indian Journal of Agricultural Economics, 1959, 14, 11-38.

significant statistically. The differential effect of weather factors on yield is a complication in such an analysis and the comparison of quinquennial averages is a safeguard which averages out these disturbances to a large extent, but cannot eliminate them altogether. An attempt was made to adjust the yields of both rice and wheat for inequalities of rainfall over the series of years under study by means of a regression analysis. This analysis was ineffective in so far as wheat was concerned, but the adjusted rice yields showed that, but for inequalities of rainfall, an average increase of $8 \cdot 0\%$ would have been secured during the plan period as compared to the pre-plan period.

We have now extended the analysis of the yield data on rice and wheat to the end of the second plan period in 1960-61. Maintenance of strict geographical comparability is essential for drawing valid conclusions in regard to changes in yield over time, and the yield data for analysis were confined to an identical coverage of districts, divisions and states for the period of fifteen years, 1946-47 to 1960-61, which is the subject of the present study. With the gradual extension of crop-cutting surveys to wider areas, yield data for rice based on these surveys have become available for more districts, divisions and one more state, Mysore, over a part of this period and a separate analysis of yields with a more comprehensive coverage has, therefore, been possible for the ten-year period, 1951-52 to 1960-61, comprising of the first and second five-year plan periods. We shall term the vield data for rice covering the entire fifteen years period as forming series I and those covering the latter ten years of this period over a wider geographical coverage as series II. The districts, divisions and states for which yield data were analysed are shown in Table I for rice and in Table II for wheat. Areas for which yield data for rice became available for series II only are marked with an asterisk in Table I. In wheat there was no further extension of crop-cutting surveys during the period under study to make any further data available for forming a second series for analysis. The area covered by crop-cutting surveys on wheat accounted for 65% of the area under this crop.

Around the year 1956 there was a further reorganization of the states, but for the purpose of the present study the data were analysed and the results are presented according to the old political boundaries for ease of comparison with pre-1956 data. It may be assumed that by the end of the second five-year plan, the pattern of extension and other agricultural services in areas which have formed part of the new states will have been stabilized and when the present analysis is extended to include the third and subsequent five-year plan periods, it

will be desirable to present the results for the various states according to their present political boundaries.

As stated already, crop-cutting surveys on rice covered 65% of the area under this crop in India as far as series I is concerned and their coverage has increased to about 72% for series II. Apart from the rice-growing areas of Mysore State, other important additions were the Telangana Division consisting of 7 districts in Andhra Pradesh and the Deccan Division of Bombay State.* The district of Manbhum in Chota Nagpur Division of Bihar no longer figures as a separate district as it was merged administratively with the neighbouring districts. Orissa continues to be without trustworthy yield data on rice in the absence of crop-cutting surveys.

Crop-cutting surveys need strengthening both by extension to new areas in order to make the coverage as complete as possible and also by intensification in existing areas by increasing the number of crop-cuttings in each district in order to improve the precision of district estimates of yield. Today this precision is low, the standard errors of average yield at the district level ranging up to 10% or some times higher even for major districts. For this reason, district-wise yields were pooled by divisions, which are compact administrative groups of up to 7 districts, by weighting the district yields with corresponding crop acreages. It was these divisional yields, which had standard errors ranging from 2 to 7% annually, that were used in the present analysis. For states, of course, the average annual yields have a high precision, the standard error being 1.5% or less for Uttar Pradesh and below 3.0% for other states. Annual estimates of divisional yields for each state are given in Tables III to X for series I and in Tables XI to XIX for series II for rice and in Tables XX to XXIV for wheat. State-wise yield figures for rice are given in Tables XXV and XXVI for series I and II and for wheat in Table XXVII.

The principal interest in the present study is to ascertain the magnitude of change in the yield rates of rice and wheat during the first and second five-year plans as compared to the yield rates of these

^{*} Yield data now embrace the autumn rice crop also in Bihar and Assam, while they were confined earlier to the winter crop in these two states. There has been an extension of the crop-cutting surveys to the summer crop in Madras. In Mysore State the entire rice crop is covered. Both aus and aman crops in West Bengal, the early and late paddy in Uttar Pradesh and the first and second crops in Andhra Pradesh were included in series I already while in Bombay and Madhya Pradesh only one rice crop is grown.

crops during the pre-plan quinquennium, 1946–47 to 1950–51. It is important also to determine how far these changes could be ascribed to plan efforts as distinct from the changes arising from the influence of weather and other uncontrolled seasonal conditions. The first step towards this end is to partition the variation observed in the annual divisional yields in different states recorded in Tables III to XIX for rice and Tables XX to XXIV for wheat into appropriate components. This splitting is done with the help of a statistical technique known as the analysis of variance. The analysis of variance shows the following components relevant to the present study:

2. Method of Analysis

(a) Variation between three sets of five years representing preplan period, first plan period and second plan period. This may be further divided into variation between pre-plan and first plan periods and between first and second plan periods. Although components of this particular subdivision are not statistically independent, they are the most meaningful for our purpose.

(b) Variation between individual years within each five-year period.

(c) Variation between divisions.

1

(d) Variation representing interaction between three five-year periods and divisions.

(e) Uncontrolled variation representing interaction between individual years within periods and divisions.

The comparison of the component (e) with (a) will show whether the average yield levels during different five-year periods were significantly different, that is whether there were real differences between these yield levels as characterising the three five-year periods or they could be accounted for by seasonal fluctuations in annual yields in different areas of the state. Such inference from this test will be valid only for the particular period of fifteen years under study. But it is often found that component (b) representing variation in annual yields for the state as a whole is substantially and significantly larger than component (e). This latter variation must then be taken into account in order to judge whether the influence of plan effort on yield level is adequate to raise this level to a degree where the improvement will stand out as significant after allowing for the annual variations due to climate and other uncontrolled factors that are to be expected in the yield level of the state as a whole. Component (c) representing permanent

differences in the yield levels of the variations of the different divisions of the state arising from physical and other characteristics of the different divisions are of no interest in our present enquiry; but component (d) representing differential reaction of different divisions to plan effort in raising yield are of some interest, as indicating the divergent response of the individual divisions in a state to plan effort.

An attempt was also made to study the influence of rainfall, which is the most important factor in the climate in relation to crops, on the yield of rice and wheat. The object to find out how far inequalities of rainfall during different periods had affected yield comparisons between these periods and to free these comparisons from the effect of this factor to the extent possible by adjustment in yield with the help of a simple regression analysis.

We shall consider the results of our analysis for rice and wheat separately.

3. RICE: ANALYSIS OF VARIANCE

The analysis of variance for rice is given in Table XXVIII for series I and in Table XXIX for series II. Tests of significance based on interaction of divisions with years (component e) and on variation between years within periods (component b) are both shown in these tables. Here we discuss the results of the present test, as interpreting the differences between average yields as actually observed in the three five-year periods from 1946-47 to 1960-61. It will be seen from Table XXVIII that except Assam, the variation in yield between the three five-year periods. representing the pre-plan, first plan and second plan periods, was highly significant in all other states. A break up of this variation into two comparisons, viz., pre-plan versus first plan and first plan versus second plan reveals that both comparisons were significant only for Andhra Pradesh and Madras States, where they were highly significant. Among other states, only West Bengal gave a significant comparison between the pre-plan and first plan periods, while Uttar Pradesh, Bihar, Madhya Pradesh and Bombay gave significant comparisons, which were also highly significant, only between the first and second plan periods.

The analysis of variance given in Table XXIX for series II corroborates these findings for the first and second plan periods, except to add an important finding for Mysore State that the comparison between the two periods was highly significant in this state also. These comparisons may be translated into comparisons of yield per acre over the three periods. These are shown in Table XXX for series I and Table XXXI for series II. These are weighted averages, with the divisional

area under rice as weight. The standard errors shown in Table XXXI are appropriate for these weighted averages. It will be seen from Table XXX that there was a significant increase of 89 lb. per acre of rice in West Bengal during the first plan period as compared to the preplan years. The only other significant increases were those in Andhra Pradesh and Madras. These were substantial increases per acre of 155 lb. and 143 lb. respectively. The all-India average showed a small but significant increase of 40 lb. per acre due to increases in these three states. During the second plan period Uttar Pradesh, Bihar and Madhya Pradesh States recorded moderate but significant increases ranging from 63 to 97 lb. per acre over their first plan yields. Three other states. Bombay, Andhra Pradesh and Madras, recorded significant but more substantial increases of 127, 122 and 160 lb. per acre respectively. Compared to the increases during the first plan period, Andhra Pradesh has shown a somewhat smaller increase in the second plan, but Madras has maintained its earlier record. As a result of several more states contributing an increase in the second plan, as compared to the first plan, the all-India increase in the second plan period has doubled that in the first plan. The all-India increase in the second plan was 80 lb. or 1 md. per acre. Assam is one state which has shown no increase whatever either during the first or the second plan period. Results in Table XXXI for series II require no comment except that Mysore State has shown the largest increase of 214 lb. per acre among states in the second plan yield over its yield during the first plan period. The percentage increases in yield over the first or the second plan in states which recorded a significant increase in either plan ranged between 10 and 15 or 16% or an average increase per year from 2 to 3%. Mysore was an exception which showed an increase of 20% during the second plan as compared to the first plan, an average annual increase of 4%. For the country as a whole, there was an average annual increase in the yield of rice of $1 \cdot 1\%$ during the first plan period and of $2 \cdot 0\%$ during the second plan period. Trends in yield in different states and the country as a whole for 15 years embracing the two plan periods and the preplan period of five years are shown in Fig. 1. Also included in the figure is the yield for Mysore State over the 10-year period of the two plans.

It will be observed from Table XXVIII that the mean square for years within the five-year periods, component (b) of the variation, is substantially and in most states significantly larger than the interaction of division with years. This means that apart from fluctuation of yield due to seasonal conditions in different divisions of the states, there is a gross annual variation in seasonal conditions affecting the

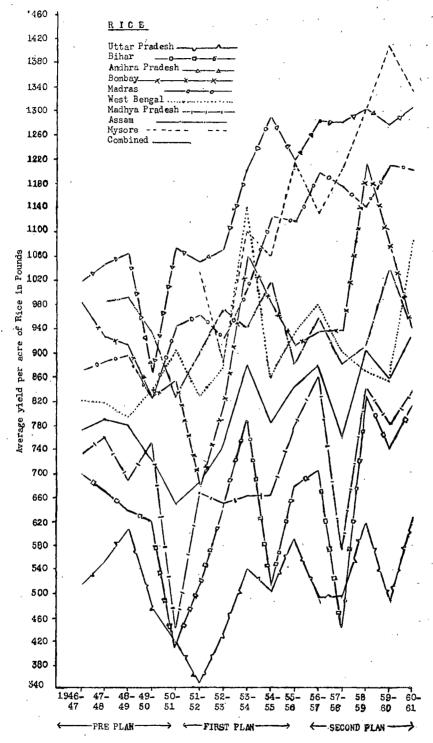


FIG. 1. Trends in average yield of rice in India, lb. per acre, 1946-47 to 1960-61.

yield of the state as a whole. We have described above the significance of the plan effort in relation to yield of rice against the background of the annual seasonal conditions experienced actually by the different states during the period of 15 years under study. In view of the large magnitude of the annual variation, however, it is desirable to allow for this variation also along with the fluctuations among the different divisions in assessing the significance of the plan effort in improving yield. This more rigorous assessment will indicate in which states the plan effort is sufficiently impressive to result in improvement of yield that can stand out without being swamped by uncontrolled annual variation in seasonal conditions likely to be met with in future.

Table XXVIII shows that the mean square for annual variation in state yield is lowest in Assam which is also a small compact area consisting of only one division. Madras, Andhra Pradesh and West Bengal (another small area consisting of two divisions) form the next group, while in Uttar Pradesh, Madhya Pradesh and Bombay the mean square for annual variation is substantially larger, Bihar having the largest variation among all states. The annual variation of yield in Mysore as estimated from the 10-year period of the two plans is also relatively low as seen from Table XXIX. Some light on the annual variation in yield in different states is thrown by the data recorded in Table XXXII. The states with low annual variation in yield are characterized either by heavy rainfall or most extensive irrigation. Assam has a rainfall of over 90 inches annually, while Andhra Pradesh and Mysore States have more than 90% of their rice area irrigated. Madras belongs to the same category, with its Southern division having irrigation for 94% of its rice area, two other divisions, Carnatic and Central, served by irrigation for 80% or more of their rice acreage and the West Coast division which has apparently no irrigation having a rainfall over 120 inches. States with larger seasonal variation in the yield of rice have much lower rainfall, usually around 40-50 inches and also a much smaller fraction of their rice area under irrigation. The fact that states with a relatively low annual coefficient of variation in yield are also the states with the highest average yields of rice in the country underlines the importance of providing maximum irrigation to rice areas in other states in order to attain high stable yields of rice.

Retesting the significance of mean square between plan periods against the mean square for years within period [component (b) above], it is observed from Table XXVIII that difference between the mean yield during the first plan and the pre-plan period is no longer significant in West Bengal, but the difference in Andhra Pradesh and Madras

States continues to be highly significant. The high significance of the difference in the latter two states also continues between the first and the second plan periods on the new test. The difference between these two periods also continues to be significant, although at a lower level, in Uttar Pradesh and Bombay but that in Bihar and Madhya Pradesh is no longer significant. From Table XXIX, it will be seen that the difference between the two plan periods continues significant in Mysore State, although at a lower level on the new test. We may note that we have tried to reduce the stringency of this test by eliminating from the mean square between years within periods any discernible linear trend among the individual years which could be ascribed reasonably to a steadily increasing effect of plan effort on yield.

We may summarize our findings as showing that only two states, Andhra Pradesh and Madras, have made a steady progress over both plans in increasing their yield of rice per acre. This progress is substantial enough to stand out as highly significant against the seasonal variation in yield in these states. Mysore, Bombay and Uttar Pradesh belong to the next category recording a highly significant increase in vield during the second plan period, which retains its significance. although at a lower level, when tested against annual variation likely to be met with in future. Bihar and Madhya Pradesh States showed significant increases during the second plan period and West Bengal showed a similar increase during the first plan period, but none of these increases was large enough to maintain significance when compared to the natural annual variation in yield in these states. Assam is one state which, as stated earlier, has made no change whatever in its yield either in the first or the second plan. Actually Assam would appear to have among the most favourable seasonal conditions, which are characterized by a very small degree of variation from year to year (Table XXXII) for responding to plan effort for increasing yield. This effort will have to be very much greater in states like Bihar, Uttar Pradesh and Madhya Pradesh, with their much larger coefficients of annual variation, to register an increase in yield which will stand out against this variation.

4. RICE: INFLUENCE OF RAINFALL ON YIELD

That the effectiveness of plan effort in raising the yield level of rice in any area is subject to natural variation in yield due to seasonal conditions or climate is well brought out in the foregoing analysis. In fact the analysis was aimed at testing and measuring the effectiveness of plan effort over and above the influence of climate on annual yields. Another way of approaching this problem would be to eliminate the differential influence of climate on annual yields by adjusting them

suitably so that yields in the different plan periods could be compared under a uniform set of climatic conditions. In practice this is impossible. For, climate is a conglomerate of numerous interacting meteorological factors which affect crop growth and production directly as well as indirectly by their influence on the spread of diseases and pests of crops. Elegant statistical methods based on regression analysis have been developed by R. A. Fisher for studying the influence on crop yields of weather factors like rainfall, temperature, sunshine, etc., and their seasonal distribution. The calculations involved are, however, laborious and the results not very satisfying, since even after adjustment, a major portion of variation in annual yield remains behind, only a small fraction of it being accounted for by the adjustment.

All the same, an attempt was made in the present study to analyse the relationship between rainfall and yield, since rainfall is a major climatic factor affecting the cultivation of rice in India. For simplicity, only the total annual rainfall was considered. It was assumed that, since the total precipitation was the chief component of seasonal rainfall, this analysis would account for the greater part of variation in yield due to this factor, even if effects due to peculiarities of the distribution of rainfall in the season were obscured. For this analysis both the actual rainfall and its deviation from the normal rainfall of the region were employed. The reason for the latter steps was the possibility that the cultivation methods of rice and level of production in a region had adjusted themselves to the characteristic or normal rainfall of the region and a comparison of the response of rice to departures from the normal rainfall of the region would be more sensitive than to deviations from the average regional rainfall for a short period of 10-15 years. In Tables III to XIX are included annual rainfall figures along with the yield for each division. Like yields, these rainfall figures were computed as weighted averages of district rainfall figures available in meteorological tables, the weights being the district area under rice. Normal rainfall figures for districts are also given in meteorological tables, these being based on records of 40-60 years. Divisional averages were computed from these as weighted averages.

A second degree regression equation was fitted to yield data based on annual rainfall as also on annual deviations from normal rainfall. The analysis of regression for each state is given in Table XXXIII and the adjusted yields on the basis of regression in Table XXXIV which also includes unadjusted yields for comparison. Regression of yield on rainfall was significant in four states, Uttar Pradesh, Bihar, West Bengal and Bombay. In these states, reduction in the residual mean

square was greater when regression was taken on deviations from normal rainfall than on actual rainfall, indicating a closer relationship of yield with the former which had been anticipated. While lack of significant relationship between rainfall and yield in Andhra Pradesh. Madras and also Mysore can be understood because of irrigation extending over almost the entire rice area in these states, although irrigation in Mysore, based largely on tanks, is itself dependent on rain. In Assam heavy rainfall is the explanation. The result for Madhya Pradesh, however, showing no significant influence of rainfall on yield is difficult to explain, with a moderate rainfall and limited irrigation in this state. It will be seen from Table XXXIII that the typical regression coefficients are a relatively large positive linear coefficient and a small negative quadratic coefficient, although linear coefficients are somewhat lower when calculated from deviation from normal rainfall than from actual rainfall. This means that higher rainfall as well as higher excess of rainfall from the normal for the region increases the yield of rice, but the rate of increase tends to slow down with very high rainfall. This is a very important finding since it means that additional water-supply to the rice crop over and above that secured from normal rainfall can be relied upon to raise the yield to a higher level than at present in several states. Once again we reach the conclusion that extension of irrigation to rice areas is a positive measure for increasing production and not merely a protection against uncertainties of rainfall. Under pressures of growing population the cultivation of rice has obviously spread to areas where it cannot meet its full demand for water from local rainfall.

A study of adjustments in yield on the basis of its regression on rainfall, shown in Table XXXIV, indicates a generally upward adjustment in the first plan as compared to pre-plan years which can be interpreted as pointing to a deficiency in rainfall in most states during the first plan. The most outstanding adjustment was in West Bengal where after adjustment the first plan yield was higher by 133 lb. per acre than the pre-plan yield, while this difference was only 89 lb. in the unadjusted yield. The change due to adjustment was much less apparent in the difference between yields for the second plan and the first plan and it was generally in the direction of scaling down this difference. Here the reduction of difference in Mysore State from 214 lb. in unadjusted yields to 165 lb. in the yields adjusted for deviation from normal rainfall was the most striking. Apparently rainfall was on the whole slightly better than normal during the second plan period in contrast to the deficit observed during the first plan period. A more detailed and

critical analysis of the relationship between rainfall and yield of rice particularly in the states which are largely dependent on rainfall for the cultivation of this crop will be profitable.

5. WHEAT: ANALYSIS OF VARIANCE

Annual divisional yields of wheat for five states, Punjab, Uttar Pradesh, Bihar, Madhya Pradesh and Bombay are shown in Tables XX to XXIV for the fifteen years 1946–47 to 1960–61. This represents a coverage of about 65% of the area under wheat in India. Unlike rice, crop cutting was not extended to any new areas or states before the commencement of the first plan period to provide any further comparisons beyond those based on data given in Tables XX to XXIV.

The analysis of variance for the yield of wheat in different states is shown in Table XXXV. Compared to the mean square for interaction between divisions and years [component (e) in the analysis of variance] the mean square between first plan and pre-plan period is significant in all states except Bihar, while that between first and second plan periods is non-significant in all states except Madhya Pradesh. that for Bihar approaching the level of significance. Mean yields for different periods and standard errors of difference are shown in Table XXXVI for each state. These are weighted averages with the divisional areas under wheat as weights. Mean yield in the first plan period was uniformly higher than in the pre-plan period in all states, although the difference was not significant in Bihar. The increase ranged to as much as 25% and 27% in Madhya Pradesh and Bombay, giving an average annual increase in yield of 5% for these two states. In contrast to this, there was no further increase in yield of even a small magnitude in any state during the second plan period as compared to the first plan period. Surprisingly enough there was a decrease in yield in Madhya Pradesh and Bihar of nearly half a maund per acre, which was significant in Madhya Pradesh.

It is a curious situation that after an appreciable all-round increases in the yield of wheat per acre during the first plan, there should be no increase at all during the second plan in any state and a disturbing decrease in two states. It should be remembered, however, that there was a widespread rust epidemic on the wheat crop in India, during the year 1946-47, and it continued to show some effect during the next two years. The epidemic was most severe in Madhya Pradesh and Bombay States, reducing their average yield to barely one maund per acre in 1946-47 (Table XXVII). In some divisions of these states the crop was all but wiped out (Tables XXIII and XXIV). These are

also the states which showed the largest proportional increase in yield during the first plan. The inference follows that the apparent increase in the first plan in these two states particularly and in other states also is merely the result of recovery from the rust epidemic that occurred during the pre-plan period, rather than any positive improvement in yield from planned effort. The fact that there is no further increase in yield in any state during the second plan period supports this inference and the conclusion appears inevitable that unlike rice, plan effort has made no impact on the yield rate of wheat either in the first or the second plan.

To test further whether the significant increases during the first plan (as also the significant decrease in Madhya Pradesh during the second plan) would continue to stand out as real, against the annual variation in the yields likely to be met with in future, the mean squares between periods in the analysis of variance in Table XXXV were compared with mean squares between years within periods (component b) after eliminating any trend that may be observed among individual vears. These latter squares are several times larger than the mean squares for component (e), the interaction between divisions and vears. On this new test all significance of mean squares either for differences between pre-plan and first plan periods or between first plan and second plan periods is wiped out leading to the conclusion that the increases in yield in the first plan as well as decreases in yield observed in Madhya Pradesh and Bihar during the second reasonably be accounted for by large disturbances plan could in annual yields due to climate and other associated factors The trends in wheat yield per acre in different states over like rust. the fifteen-year period, 1946-47 to 1960-61, are shown in Fig. 2.

6. WHEAT: INFLUENCE OF RAINFALL ON YIELD

Although our earlier attempt to study the variation in wheat yield in relation to rainfall proved negative in the sense that the annual rainfall divided into two periods, monsoon and post-monsoon, showed no significant relationship with yield in any state, we were led to reexamine this question with reference to Bihar and Madhya Pradesh States, because of the decrease in yield observed in the two states during the second plan period. The total annual rainfall was split into two periods, June to October and November to May, and a joint regression of divisional yields on the rainfall in these two periods was studied in each state. The result was again negative as the regression failed to account for any portion of the annual variation in yield. Obviously some other factors in the climate, like temperature, humidity, etc., are

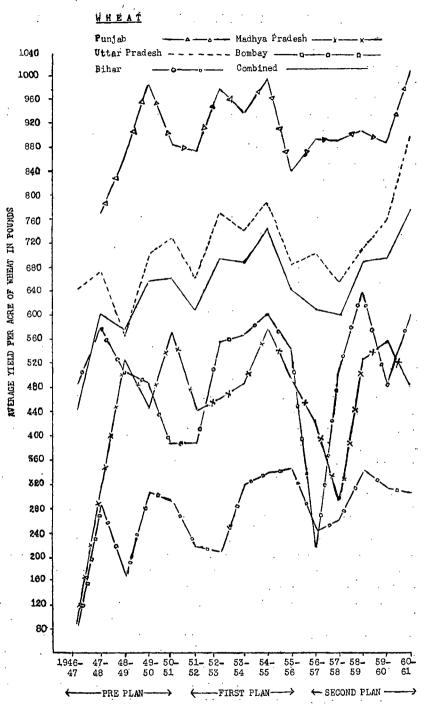


FIG. 2. Trends in average yield of wheat in India, lb. per acre, 1946-47 to 1960-61.

responsible, and a more critical analysis of this problem is called for. Like rice, we have recorded in Table XXXVII yields of wheat, their annual coefficients of variation, annual rainfall and extent of irrigation of the wheat area. These present an interesting pattern. Bombay and Madhya Pradesh with the smallest proportion of their wheat area under irrigation show the largest coefficients of variation, which are understandably larger than the coefficients of variation for the yield of rice in these two states. Bihar and Uttar Pradesh show distinctly lower coefficients of variation in the yield rates for wheat, which in fact are of the same order as for the yield of rice in these two states. The situation is rather puzzling in the case of Uttar Pradesh where in several divisions the greater portion of the wheat area is under irrigation and a much lower coefficient of variation should be expected. Perhaps irrigation, which is normally light for wheat is resorted to in many areas of the state only when considered absolutely necessary for saving the crop rather than as a normal measure for increasing yield. In contrast, Punjab shows the lowest coefficient of variation with only 56% of its wheat area under irrigation, presumably because irrigation is practised regularly and in adequate measure. Punjab yield of wheat is also the highest among the different states and extension of irrigation to other wheat areas in the country is perhaps even more important than rice for raising the yield of wheat per acre substantially.

7. SUMMARY AND CONCLUSION

In the present paper, we have extended our study on the trends of yield per acre of rice and wheat in India to the end of the second plan period, *i.e.*, 1960–61. Results of crop-cutting surveys in important rice and wheat-growing states and covering over 70% of the area under rice and 65% of the area under wheat in the country have been analysed for a period of 15 years. This period covers a pre-plan period of five years from 1946–47 to 1950–51 and the first and the second five-year plan periods.

The main objective of the study is to find out whether and to what extent the two five-year plans have made their impact on the yield rate for rice and wheat in different states and in the country as a whole. The annual yield in any area is subject to the profound influence of climate. This influence may work in the direction of increasing or lowering yield, thereby either exaggerating the effect of planned effort and even misleading one to ascribe to planned effort an observed increase in yield which was really due to favourable climate, or if this influence was adverse, in lowering the effect of planned effort on yield or wiping it out entirely. A major precaution taken against this difficulty in the

present study is to compare guinguennial averages of vield, rather than annual yields. This has the effect of reducing the influence of climate on yield, as positive and negative changes in annual yield due to climate would largely cancel out and the quinquennial average will be affected by only a fraction of the climatic influence to which annual vields are subject. Further even this residual influence is sought to be assessed by means of the statistical technique known as the analysis of variance and allowed for by the calculation of standard errors in comparing the average quinquennial yields. We have used two tests for this purpose. One utilized the natural variation in annual yield among the different divisions of a state within each five-year period as a measure of the influence of climate, over the actual period of 15 years studied. The assumption here was that we were interested in ascertaining and estimating the effect of planned effort on vield against the background of overall climate, favourable, unfavourable or indifferent, actually experienced over the particular set of 15 years under study. We may also want to take a broader view of the influence of planned effort on raising yield by assessing whether the increase in vield is of a sufficient magnitude to withstand the annual climatic variations in the state yield, such as are likely to be met with normally, rather than confining this assessment to a particular period of years. This more rigorous test can be made by testing the mean square between plan periods, against the mean square for years within plan periods after removing any possible trend in the latter. Both tests have been made in the present study.

An interesting and important offshoot of the second test is to show that a certain minimum increase in the average yield over any plan period as compared to the average yield in the previous plan or any other quinquennial period is necessary to provide a reasonable assurance that it is the result of plan effort and not a fortuitous increase arising from annual variations in state yields due to climate and other associated factors. For rice this minimum increase is as high as 150–180 lb. per acre in states of Madhya Pradesh, Bombay and Bihar. In Madras, Assam and Andhra Pradesh, where rice yield are more stable, this figure ranges from 50–90 lb. In wheat the range is from 70–110 lb. per acre, the higher values being associated with Bihar and Madhya Pradesh.

In rice, plan effort has made a definite impact on yield, the average countrywide yield being raised by 40 lb. per acre during the first plan and by 80 lb. per acre further during the second plan. The latter figure would be 86 lb. if all data for crop cutting extended to additional areas including Mysore State are taken into account. The largest

and most consistent increases were contributed by Madras and Andhra Pradesh States, these being 143 and 155 lb. per acre during the first plan and 160 and 122 lb. per acre during the second plan. These increases retained their significance when tested against annual climatic variation in yields in these states, indicating that they were not brought about because of any particularly favourable climatic conditions during those years. No other state showed such positive increase in yield during the first plan. West Bengal did show an average increase of 89 lb. per acre, but it could not be considered significant when tested against annual variation in yield in the state. It should be noted that this state did not show any further increase in yield during the second plan, which supports the indication that the earlier increase was at least partly influenced by climatic conditions during the particular years. In the second plan several states contributed to increased yield of rice these being Mysore (for which crop-cutting data for estimating increase in yield during the first plan are not available), Bombay, Uttar Pradesh, Bihar and Madhya Pradesh. The increase was highest in Mysore, being 214 lb. per acre, Bombay with an increase of 127 lb. per acre came next while the other three states showed increases of less than 100 lb. per acre. The increases in Mysore, Bombay and Uttar Pradesh only were established more firmly in that they maintained their significance when tested against natural annual variations of yield in these states. The tempo of planned effort was thus distinctly greater during the second plan than in the first and raised the rice yield in the country by 16%, when compared to the pre-plan yield level. Assam was one state which showed no improvement in yield, either in the first or the second plan, although a high rainfall and other relatively stable favourable environmental conditions should bring about a quick response to planned effort in this state.

In an attempt to probe into the nature of the effect of climate on the yield of rice, the relationship between annual rainfall and yield was studied. Except in Andhra and Madras where most of the rice area is served with irrigation from canals and other large works, annual rainfall showed a significant influence on yield. This was so even in Mysore where practically the entire rice area is served by tanks; but these tanks which are mostly small are also at the mercy of the seasonal rainfall for their capacity to supply irrigation. The relationship between rainfall and yield is such that yield increases with increase in rainfall even beyond the normal rainfall for the region. Obviously under pressure of growing population rice cultivation has spread to areas where the normal rainfall is inadequate to meet the full requirement of

the crop and extension of irrigation to rice area is an important measure for increasing rice yield. In fact, irrigation and use of fertilizers, while simultaneously spreading the use of strains developed from Indo-Japanica crosses which can respond to large doses of fertilizers, are the principal methods of raising rice yield substantially and these measures need to be pressed forward with all possible speed, considering that over the two plans rice yield has increased by only one and a half maund per acre and there is still a large scope for further increase.

In contrast to rice, the conclusion from the present study in regard to wheat is that there is no evidence of any impact of planned effort on increasing the yield of wheat per acre in any state either in the first or the second plan. Undoubtedly the average countrywide vield on the basis of our study for five states, Punjab, Uttar Pradesh, Bihar, Madhya Pradesh and Bombay, was nearly 12% higher in the first plan period than in the pre-plan quinquennium and all states individually contributed to this result with increases ranging from 5% in Punjab to as much as 27% in Bombay State. Increases in four states, with the exception of Bihar, were highly significant when tested against variation among annual yields in different divisions of a state. This significance, however, completely disappeared when the test was made against annual variations in the state yield, indicating that the increase could be explained by seasonal differences. In fact, in 1946-47 there was a severe rust epidemic in the wheat belt of the country and in some areas the crop was all but wiped out. The effect of this epidemic on yield extended over the next two years in some areas. The epidemic was severest in Madhya Pradesh and Bombay and these were the two states that showed the largest proportional increase of 25 and 27% in the first plan period. The conclusion is that the increase in yield observed in the first plan was a measure of the recovery of the crop from the rust epidemic that it had suffereed during the pre-plan period. Further support to the conclusion that the increase observed in the first plan period was due to extraneous factors and not due to any planned effort is given by the fact that the average second plan yield in the country stood at exactly the same level as in the first plan. No change was observed in the individual states also, except for a disconcerting decrease of 37 and 36 lb. per acre in Bihar and Madhya Pradesh, which should be ascribed to climate. It is a serious matter that little or no planned effort has gone into raising the yield level of wheat in any state, when the importance of wheat among foodgrains is only next to rice. Causes for this lack of effort need to be investigated into and remedied urgently.

Like rice, the relationship between rainfall and yield was studied for wheat also in an attempt to find at least a partial explanation of the climatic influence. For this purpose the annual rainfall was split into two portions, monsoon and post-monsoon, and a joint relationship of these subtotals of rainfall with yield was analysed. The result was negative in that no evidence of any relationship could be found. The depression in yield during the second plan period in Bihar and Madhya Pradesh could also not be explained on this basis. This is a curious result when it is remembered that the wheat crop is much more at the mercy of rainfall, than rice since a lower proportion of the wheat area is irrigated. Some other factors like humidity, temperature, distribution of rainfall, etc., would seem to play a more important role and deserve critical investigation.

The present series of crop-cutting surveys on food-grains and other crops, as we mentioned at the beginning of this paper, form the most vital and reliable means for a critical evaluation of successive fiveyear plans in relation to the level of crop yields. The importance of continuing this series and strengthening it further cannot be over-emphasised. Today there is a considerable degree of non-response in several states in the conduct of crop-cutting and supervision of the field work is also not on an adequate scale. The district estimates of yield do not have sufficient precision and we have for this reason compiled divisional estimates for our analysis. Analysis with district-wise data would be much more penetrating, will help in spotting out weak areas in relation to planned effort and would be more rewarding in any attempt to discriminate between the influence of planned effort and other factors like those of climate on yield level. For this purpose the aim of cropcutting surveys should be to provide district-wise estimates of important food and non-food crops with a reasonable level of accuracy, that is with a standard error within 5%. This requires concentration of all available financial and technical resources on strengthening the primary reporting agency and supervision of fieldwork in the states, in imparting proper training to the field staff and in improving the technical competence of state organizations directing this work, instead of dissipating these resources in all kinds of experimentation with plot sizes and field agencies, which has no relevance to our needs.

8. ACKNOWLEDGEMENTS

The yield data for 1956-57 to 1960-61 for all states except West Bengal were extracted from the reports of the crop survey wing of the National Sample Survey. Figures for West Bengal were supplied by

the Director of the Statistical Bureau. Data on crop acreages were obtained from the reports of the Directorate of Economics and Statistics, Ministry of Food and Agriculture, Government of India. Rainfall data were supplied for the respective states by the Director of Bureau of Economics and Statistics, Andhra Pradesh, Director of Statistics, Assam, Director, Central Bureau of Economics and Statistics, Bihar, Deputy Director of Agriculture (Statistics), Gujarat, Director of Statistics, Kerala, Director of Land Records, Madhya Pradesh, Director of Statistics, Madras, Director of Agriculture, Maharashtra, Director of Statistics, Mysore, Statistician, Department of Agriculture, Puniab. Land Reforms Commissioner, Uttar Pradesh and Director of Statistical Bureau, West Bengal. The authors' thanks are due to these officers and organizations for their help in making these data available. The author also wishes to acknowledge the painstaking and careful work done by Shri M. K. Bose in the computation and compilation of the data and assistance given by Shri A. L. Punhani.

TABLE I

Districts, Divisions and States for which yield data on rice are analysed.

- State		Division	District
. Andhra Pradesh	1.	Circars	1. Vizagapatam
			2. East Godavari
			3. West Godavar
			4. Krishna
			5. Guntur
÷			6. Srikakulam*
	: 2.	Carnatic	1. Nellore
•	3.	Central	1. Chittoor
	4.	Telangana*	1. Mahbubnagar*
		•	2. Adilabad*
i.			3. Nizamabad*
			4. Medak*
•			5. Karimnagar*
			6. Nalgonda*
. Assam	1.	Plains	1. Cachar
		r	2. Darrang
:			3. Kamrup
			4. Lakhimpur
		*	5. Nowgong
			6. Sibsagar
• -			7. Goalpara*
Bihar	1.	Patna	I. Patna
•		•	2. Gaya
<i>'</i> .			3. Shahabad
·	2.	Tirhut	1. Saran
			2. Champaran
			Muzaffarpur
			4. Darbhanga
· .	3.	Bhagalpur	1. Monghyr
,			2. Saharsa
		•	3. Bhagalpur
			4. Purnea
		:	5. Santal Pargana

·	IAD	LE I (Contu.)		
State		Division		District
···· ·	4.	Chotanagpur	1. 2. 3.	Hazaribagh Ranchi Palamau
			4. 5.	Singhbhum (Manbhum)†
4. Bombay .	. 1.	Gujarat	1. 2. 3.	Kaira Panch Mahals Surat
•			3. 4. 5.	Broach* Baroda*
	2.	'Karnatic	1 2. 3.	Belgaum Dharwar Kolhapur*
	3.	Konkan	1. 2. 3. 4.	Thana Kolaba Ratnagiri Kanara
	4.	Deccan*	1. 2. 3. 4.	West Khandesh* Nasik* Poona* North Satara*
5. Madhya Pradesh	. 1.	Jabalpur	1. 2. 3.	Jabalpur Mandla Sagar
	2.	Nagpur	1. 2:	Chanda Chhindwara
	3.	Chattisgarh	1. 2. 3.	Bhandara Balaghat Drug
			3. 4. 5.	Drug Bilaspur Raipur
6. Madras	. 1.	Carnatic	1. 2.	Chingleput South Arcot
2 - 10-10 - 10 - 10 - 10 - 10 - 10 - 10				

TABLE I (Contd.)

1			· · · · · · · · · · · · · · · · · · ·
State	· · ·	Division	District
	2.	Central	 North Arcot Tiruchirapalli Salem*
	3.	South	 Tanjore Madurai Ramnathapuram Tirunelveli
	4.	West Coast	 Malabar South Kanara
7. Mysore*	1.	Mysore*	 Mandya* Mysore* Hassan* Chikmagalur* Shimoga*
	2.	Bangalore*	 Chitaldrug* Tumkur* Kolar* Bangalore*
3. Uttar Pradesh	1.	Meerut	 Saharanpur Muzaffarnagar
	2.	Rohilkhand	 Bareilly Budaun Shahajahanpur Pilibhit Bijnor* Moradabad*
	3.	Allahabad	 Etawah Kanpur Fatehpur Allahabad
	4.	Varanasi	 Varanasi Mirzapur Jaunpur Ghazipur Ballia

TABLE I (Contd.)

State		Division	District
· .	5.	Gorakhpur	 Gorakhpur Basti Azamgarh Deoria
	6.	Lucknow	 Lucknow Unao Rae Bareli Sitapur Hardoi Kheri
	7.	Faizabad	 Faizabad Gonda Bahraich Sultanpur Partapgarh
. West Bengal	1.	Burdwan	 Burdwan Birbhum Bankura Midnapur Howrah Hooghly
	2.	Presidency	 24-Parganas Nadia Murshidabad West Dinajput Malda Jalpaiguri

TABLE I (Contd.)

• Areas without an asterisk are those for which yield data by crop cutting are available for fifteen years, 1946-47 to 1960-61, while those with asterisks are additional areas for which yield data are available only for ten years, 1951-52 to 1960-61, through extension of crop-cutting surveys to those areas.

† This district wass merged with neighbouring districts in 1956.

TABLE II

Districts, Divisions and States for which yield data on wheat are analysed

	A A A A A A A A A A A A A A A A A					
	State			Division	1. -	District
1.	Punjab		1.	Ambala	1.	Hissar
	- ,			· · ·	2.	Rohtak
	• . •	•	•	· .	3.	Gurgaon
					4. 5.	Karnal Ambala
	· · ·			•	5.	Ambala
			2.	Jullundur	1.	Kangra
-	•		2.	, "	2.	Hoshiarpur
					3.	Jullundur
		-			· 4.	Ludhiana
				1. 1.	5.	Ferozepur
		•	•		6.	Amritsar
۰.	• • .				7.	Gurdaspur
	•			н. Г	•••	
n	Uttar Pradesh	·	1.	Meerut	1.	Dehra Dun
Ζ.	Uttal Fladesh	• • •	1.	INICCI UL	2.	Saharanpur
					3.	Muzaffarnagar
				· /	4.	Meerut
		•			4. 5.	Bulandshahar
			•		· J.	Dulanusnanai
•			2.	Agra	1.	Aligarh
					2.	Mathura
· ·	· · · ·			•	3.	Agra
	· · · · ·				4.	Mainpuri
		1			5.	Etah
•	: ⁽ ,			4 1		
			3.	Rohilkhand	· 1.	Bareilly
-	5 · ·			и , • Ч.	2.	Bijnor
					. 3.	Budaun
÷				10 - 1 10	4.	Moradabad
			•	е. ., с	5.	Shahajahanpur
				· · ·	6.	Pilibhit
	,					
	· , ·		4.	Allahabad	1.	Farrukhabad
	· · · ·				2.	Etawah
	•				3.	Kanpur
•					<u> </u>	Fatehpur
			•	4	5.	Allahabad
	۰.		F	Thomas	. 1	Thomas
			5.	Jhansi	1.	Jhansi
•					2.	Jalaun

	State		Division		District
· · ·	· · · · · · · · · · · · · · · · · · ·	. 5.	Jhansi (Contd.)		Hamirpur Banda
	· · · · · · · · · · · · · · · · · · ·	6.	Varanasi	1. 2. 3. 4. 5.	Varanasi Mirzapur Jaunpur Ghazipur Ballia
	¢	7.	Gorakhpur `	1. 2. 3. 4.	Gorakhpur Basti Azamgarh Deoria
		8.	Lucknow	1. 2. 3. 4. 5. 6.	Lucknow Unao Rae Bareli Sitapur Hardoi Kheri
	· · · · · · · · · · · · · · · · · · ·	9.	Faizabad	1. 2. 3. 4. 5. 6.	Faizabad Gonda Bahraich Sultanpur Partapgarh Barabanki
3.	Bihar .	. 1.	Patna	1. 2. 3.	Patna Gaya Shahabad
		2.	Tirhut	1. 2. 3. 4.	Saran Champaran Muzaffarpur Darbhanga
		3.	.Bhagalpur	1. 2. 3. 4. 5.	Monghyr Bhagalpur Saharsa Purnea Santal Parganas

TABLE II (Contd.)

yield trends of rice and wheat in first two five-year plans -27

TABLE II (Contd.)

State	Division	District
4. Madhya Pradesh 1.	Jabalpur	 Saugar Jabalpur Mandla
	, , , , , , , , , , , , , , , , , , ,	3. Mandla 4. Hoshangabad 5. Nimar
. 2.	Nagpur	 Betul Chhindwara
	· · .	 Wardha Nagpur Chanda
3.	Chattisgarh	1. Bhandara 2. Drug
	· · · · ·	 Raipur Bilaspur Balaghat
. 4.	Berar	1. Akola 2. Amraoti 3. Buldana 4. Yeotmal
5. Eombay 1.	Gujarat	 Ahmedabad Broach
2.	Deccan	 West Khandesh East Khandesh Nasik Ahmednagar
3.	Karnatak	 Belgaum Bijapur Dharwar

1	.1	ġ	ċπ	y in	فت	Ņ		1		t
Calculated	Faizabad	Lucknow	Gorakhpur	Varanasi	Allahabad	Rohilkhand	1. Meerut	Division	· . ·	Divisional .
value in the absence of crop-cutting results.	Yield Rainfall	Yield Rainfall	Yield Rainfall	Yield Rainfall	Yield Rainfall	Yield Rainfall	Yi e ld Rainfall			Divisional yield lb. per acre of rice and annual rainfall in inches, Uttar Pradesh, Series I, 1946-47 to 1960-61
absenc	416 38•7	444 32•5	521 46• <u>4</u>	608 50•0	$529 \\ 31.7$	585 41•7	773 38•2	1946- 47		acre
e of cr	557 44•8	577 42•4	600 43•0	419 32•3	629 32•5	522 35•9	503 35•6	1947- 48		of rice
op-cutti	595 50•1	529 42•2	687 56•3	566 65•1	667 55•2	479 43•9	764 40•9	1948- 49		and u
ng resu	427 40•9	431 46•0	492 46•6	472 44•2	636 39•0	484 44•4	509 32•0	1949- 50		Innual
lts.	359 34•1	$\frac{440}{35 \cdot 2}$	429 37-9	367 44•6	$493 \\ 34 \cdot 5$	462 38•7	589 45•3	1950- 51		rainfai
	323 28•4		251 31 • 9	363 31 • 4	640 33•9	365 28•5	450* 23•6	1951- 52	÷	ll in in
!	$\substack{435\\35\cdot9}$	401 32•7	477 41 • 0	391 35•0	433 32•6	350 28•5	555 33•3	1952- 53	_	iches,
	503 57-2	507 46-0	546 57•8	511 48•0	591 46•8 -	553 44•1	685 38•9	1953 - 54	Vear	Uttar
	499 36•9	588 41•9	549 35•5	255 25•5	629 33•1	$\begin{array}{c} 476\\ 40\cdot 9\end{array}$	557 32•5	1954- 55		Prade
	583 72-1	661 51•6	524 77•0	6 48 46•0	668 46•1	561 55•2	519 49•9	1955- 56		sh, Se
	416 46•3	558 39•7	426 69•3	524 56•8	624 43•3	478 49•0	908 60•2	1956- 57		ries I,
	499 41•0	568 35-7	.420 43•5	331 35•4	609 31•0	686 40•3	800 43•3			1946
	546 47•3	574 44•1	585 55•2	635 37•1		754 62•4	936 49•8	1958 - 59		-47 to
	546 397 517 47•3 35•7 53•3	529 26•4	432 44•9			518 37•9	813 - 39+2	1957- 1958 1959- 1960- 58 59 60 61		1960
. 1	517 53•3	591 54•5	568 42•3	687 3f•2	762 45•7	808 65•1	839 36•2	1960 61		-61

TABLE III

		· ·					,	n	Year			•••				· · ·
Division	۰ ۰	194 6 - 47	1947 48	1 9 48 : 49	1949- 50	1950– 51	1951– 52	195 <i>2</i> - 53	1953- 54	195 4 - 55	1955- 56	195 6 - 57	1957– 58	1958- 59	1959- 60	1960- 61
I. Patna	Yield Rainfall	694 53•8	477 34•9	646 55•4	561 42 •2	329 40·0	415 32•9	602 41•4	752 50•1	468 33•4	711 37•3	704 50·3	587 31•9	921 40•9	771 41•5	872 39•2
2. Tirhut	Yield R ai nfall	$549 \\ 38 \cdot 3$	610 47•8	$594 \\ 52 \cdot 6$	555 55•4	$253 \\ 37.5$	437 47•0	599 48•1	618 77•4	473 43•7	533 57•8	576 58•2	$351 \\ 40 \cdot 1$	$743 \\ 55 \cdot 1$	585 39•0	$692 \\ 48 \cdot 5$
3. Bhagalpur	Yield Rainfall	661 49•3	695 47•4	$561 \\ 56 \cdot 4$	543 58•8	386 _ 55•1	482 49•4	61 7 53•6	762 75•4	-5 33 51•5	650 53•9	729 68•0	411 39•6	824 53•3	749 63•4	$855 \\ 52 \cdot 9$
4. Chota Nagpur	Yield Rainfa ll	937 60•5	859 49∙1	790 58•8	$\begin{array}{c} 813\\ 51\cdot 3\end{array}$	635 59•2	$695 \\ 46 \cdot 4$	$732 \\ 51 \cdot 2$	963 76•3	$\begin{array}{c} 574\\ 41\cdot 6\end{array}$	792 45•5	$\begin{array}{c} 822\\ 56\cdot 9\end{array}$	405 46·0	828 46•5	842 56•9	883 52•7
							Tabli	εV		. ·				•		
• Divisional	yield lb. p	er acro	e of rid	e and	annual	rainfa	all in ir	iches,	West .	Bengal.	Serie	s <u>I</u> , 19	946–47	to 19	60–61	
	· · · ·		•				. ·		Year		,					
Divis i on -		1946- 47	1947 48	1948 49	19 4 9- 50	1950– 51	1951– 52	1952- 53	1953- 54	.1954- 55	1955- 56	1956- 57	1957- 58	1958- 59	1959 60	1960 61
I. Burdwan	Yield Rainfall	866 60•9	841 46•2	784 60•5	841 50•6	985 60•5	935 47•7	949 50•2	$1249 \\ 56.3$	881 40·0	998 54•5	$1028 \\ 62 \cdot 5$	1041 45•0	925 44•9	935 65•9	$1183 \\ 50.9$
							677	769	976	828	837	910	718	798	747	95 6

• • • •					•			•	Year			. '	•			• •
Division	-	1946- 47	1947 48	1948- 49	19 4 9– 50	1950 - 51	1951- 52	1952- £3	1953- 54	1954- 55	1955- 56	1956- 57	1957- 58	1958 - 59	195 9- 60) 96 0 61
. Plains	Yield Rainfall	- *	979 111•6	989 - 99•2	926 90•6	825 71•6	898 92•2	968 102•9	939 90•3	1017 89•6	881 98•6	956 9 6 •6	· 882 96•4	910 96•4	1038 80•3	933 90•2
* No cro	p-cutting surve	ey in	1946-47.								-			,		
									· .	·						•
						· —	* *									
D ' '					, .		BLE V				_		ъ.	<i>.</i> .		
Divisional	yield lb. per	· acre	of rice	and	annual				Madh	ya Pra	desh, S	Series	<i>I</i> , 1940	5–47 te	o 1960-	-61
	yield lb. per	· acre	of rice	and	annual				<i>Madh</i> Year	····· . ·	desh,	Series	<i>I</i> , 1940	5–47 to	o 1960	-61
Divisional Division	yield lb. per	<i>acre</i> 1946- 47	of rice 1947- 48	e and 1948- 49	annual 1949– 50					····· . ·	1955- 56	Series 1956- 57	<i>I</i> , 1946	5–47 to 1958– 59		-61 1960- 61
Division	yield lb. per Yield Rainfall	1946-	1947-	1948-	1949-	<i>rainfa</i> 1950-	ll in in 	1952-	Year 1953–	1954–	1955- 56 56 0	1956-	1957–	1958-	1959-	 1960
· · ·	Yield	1946- 47 519	1947- 48 582	1948- 49 542	1949- 50 508	rainfa 1950- 51 205	ll in in 1951- 52 464	aches, 1952– 53 380	Year 1953– 54 443	1954– 55 485	1955- 56 56 0	1956- 57 6 97	1957– 58 242	1958- 59 545	1959- 60 517	1960- 61 449

TABLE VI

•									Year		-	^				
Division	• •	1946- 47	1947– 48	1948- 49	1949- 50	1950- 51	1951- 52	1952- 53	1953– 54	1954- 55	195 5 - 56	1956- 57	1957- 58	1958- 59	1 9 59- 60	1660- 61
. Gujarat	Vield Rainfall	878 47·2	646 30•6	358 19•8	616 84•9	589 43•6	108. 19•8	382 30•5.	. 750 48•4	704 62•1	610 45•9	729 58•0	453 33•2	884 59•8	840 71-0	537 34·3
.Konkan 👻	Yield Rainfall	1068 111•9	1010 97•8	1082 118•1	949 116•3	962 96•5	929 114•9	1069 88•2		$1155 \\ 139 \cdot 5$		1040 139•4	1147 ∵117•9	1343 157•0		1129 138•9
. Carnatic	Yield Rainfall	808 56-2	935 40•3	846 47•4	793 2 9• 4	$1084 \\ 51.8$	887 41•2	$\begin{array}{c} 764 \\ 41 \cdot 4 \end{array}$	885 69•3	969 55•8	802 34•2	978 42•9	1269 37•8	1458 -27•5	$\begin{array}{r} 1527\\ 34 \end{array} 6$	1032 33•1
•	• •						IE IV					-				
Divisional y	ield lb. pe	er acre	of ric	e and	annua		LE IX	inches,	Andhi	ra Pra	desh, S	Series	<i>I</i> , 194	6–47 <i>t</i>	o 1960)61
	ield lb. pe	er acre	of rid	e and	annua			inches,	<i>Andhi</i> Year	ra Pra	desh, S	Series	<i>I</i> , 194	6–47 <i>t</i>	o 1960)61
Divisional y	ield lb. po	er acre 1946- 47	of ric 1947- 48	<i>e and</i> 1948- 49	<i>annua</i> 1949– 50			1 inches, 1952– 53		ra Pra 1954– 55	desh, S 1955– 56	Series 1956- 57	<i>I</i> , 194 1957– 58		-)-61 - 1960- 61
		1946-	1947- 48 1102	1948- 49 1084	1949- 50 859	l rainfo 1950- 51	all in 1951– 52 1113	1952-	Year 1953- 54	1954- 55 1333	1955– 56 1233	1956- 57 1244	1957- 58 1265	1958- 59 1308	1959- 60 1280	- 1960- 61
Division	Yield	1946- 47 1019	1947- 48 1102	1948- 49 1084	1949- 50 859	<i>l rainfe</i> 1950- 51 1104	all in 1951– 52 1113	1952- 53 1089	Year 1953- 54	1954- 55 1333 49.8 963	1955– 56 1233 3 43·4 1102	1956- 57 1244 49•4 1526	1957- 58 1265 26-1 1377	1958- 59 1308 3 54- 1272	1959- 60 1280 4 46 • 1115	- 1960- 61 1319 7 40•0 1181

TABLE X

									Year	•		•				
Division	· ,	1946- 1 47	947- 48	1948 49	1949- 50	1950- 51	1951– 52	1952- 53	195 3 - 54	- 1954 55	1955- 56	1956– 57	1957– 58	1958 59	1959– 1 60	1960- 61
1. Carnatic	Yield Rainfall		69 32•9	717 36·0	747 29•3	821 32•9	918 35•5	936 30·1	1002 49•7	$ \begin{array}{c} 1077 \\ 7 52 \cdot 6 \end{array} $		$1153 \\ 45 \cdot 8$	112 6 40•0			138 58•9
2. Central	Yield Rainfall		80 30•3	942 30•1	$1050 \\ 30.5$	$1171 \\ 26 \cdot 7$	$\begin{array}{c} 1106 \\ 27 \cdot 8 \end{array}$	$\substack{1143\\31\cdot2}$	1166 40・6	1288 38•0	1387 35•1	$1287 \\ 42 \cdot 7$	$1360 \\ 31 \cdot 1$	$1067 \\ 28.9$	$1154 12 \\ 26 \cdot 2$	2 6 6 38∙1
3. South	Yield Rainfall		82 27•6	987 30•8	$799 \\ 31.6$	$1031 \\ 33 \cdot 2$	1014 31•0	$928 \\ 26 \cdot 9$	$1078 \\ 42 \cdot 9$	1209 42•4	1090 37•8	$1256 \\ 35 \cdot 6$	1249 46•1		1299 12 33•6	236 47•0
4. West coast	Yield Rainfall		746 L28∙8	840 144•6	773 122 •3	$\begin{array}{c} 760 \\ 134 \cdot 5 \end{array}$	821 116•0	778 99•3	$784 \\ 125 \cdot 4$	898 157•5	$859 \\ 142 \cdot 4$	969 118∙5	950 133∙0		$\begin{array}{ccc} 1100 & 11 \\ 177 \cdot 9 & 1 \end{array}$	
· · · · · ·							BLE X	T ·····					,			
Divisional	yield lb.	per acre	of rid	ce and	annuc				Uttar	Pradesl	h, Serie	es II.	1951-:	52 <i>to</i> 1	960–61	•
		•	•						Year			_	•			
Division		1951-52	18	52-53	1953	-54	1954-55	195	556	1956-57	1957-	-58 1	958-59	1959-6	0 196	60-61
1. Meerut	Yield Rainfall	*450 23•6	54 1	555 33•3	685 38	; ;•9	557 32•5	51 4	9 9•9	908 60•2	800 43		936 49•8	813 39•2	889 30	6•2 ⁻
2. Rohilkhand	Yield Rainfall	$318 \\ 29 \cdot 4$	ļ,	370 30∙0	505 42	•9	440 40•0	51 5	4 1•4	488 50•7	$\begin{array}{c} 625\\ 41\end{array}$		$715 \\ 58.9$	552 36•3	749 58	5 •8
3. Allahabad	Yield Rainfall	640 33•9		433 32•7	59] 46	L •8,	629 33•1	66 4	8 6•1	$624 \\ 43 \cdot 3$	609 31 -		729 39•4	548 30•9	762 45	5 •7
4. Varanasi	Yield Rainfall	363 $31 \cdot 4$:	391 35∙0	$511 \\ 48$		$255 \\ 25 \cdot 5$	64 4	8 6•0	$524 \\ 56 \cdot 8$	331 35•	4	635 37•1	499 32•4	687 36	5•2
5. Gorakhpur	Yiel d Rainfall	251 - 31•9)	477 41·0	546 57	•8	549 35•5	52 7	4 7•0	42 6 69•3	420 43•		585 55•2	432 45•0	568 42	2.3
6. Lucknow	Yield Rainfall	368 26•2		$401 \\ 32 \cdot 7$	507 46		588 41•9	66 5	1 1•7	558 $40\cdot 0$	568 35•		574 4 4 · 1	529 2 6 •4	591 54	1· 5
7. Falzabad	Yield Ka i nf a ll	⁻ 323 28•4	L	435 35•9	503 57	•2	499 36•9	58 7	3 2 • 1	416 46•3	499 41		546 47•3	397 35•7	517 51	3•3

Divisional yield lb. per acre of rice and annual rainfall in inches, Madras, Series I, 1946-47 to 1960-61

* Calculated value in the absence of crop-cutting results.

45 -

journal of the indian society of agricultural statistics

Division			``````````````````````````````````````			Year					·
		1951-52	1952-53	1953-54	1954-55	1955-56	1956-57	1957-58	1958-59	1959-60	1960-61
1. Patna	Yield Rainfall	$\begin{array}{c} 412 \\ \mathbf{32\cdot 9} \end{array}$	597 41•5	747 50•1	465 33•4	707 37•3 -	702 50•4	584 31•9	916 40•9	766 41.5	867 \$9•1
2. Tirhut	Yield Rainfall	$\begin{array}{c} 426\\ 47\cdot 3\end{array}$	570 48•4	599 7 7 • 0´	$\begin{array}{r} 462 \\ 43 \cdot 7 \end{array}$	519 58•1	55 6 58•5	353 40•4	71 0 55•2	$558 \\ 39 \cdot 1$	682 48 • 6
3. Bhagalpur	Yield Rainfall	471 50·0	588 54•7	722 75•8	514 $51 \cdot 7$	$633 \\ 55 \cdot 5$	694 68 • 8	403 39•9	$772 \\ 54 \cdot 0$	717 6 2 •9	815 53•3
4. Chota Nagpur	Yield Rainfall	642 46•4	$\begin{array}{c} 673 \\ 51 \cdot 5 \end{array}$	895 76 · 0	$544 \\ 41 \cdot 9$	739 45 • 9	745 57•1	408 46•4	759 46•7	777 56•9	815 5 3 •0

TABLE XII

ŝ

Divisional yield lb. per acre of rice and annual rainfall in inches, Bihar, Series II, 1951-52 to 1960-61

TABLE XIII

Divisional yield lb. per acre of rice and annual rainfall in inches, West Bengal, Series II, 1951-52 to 1960-61

Division		Ytar									· .
		1951-52	1952-53	1953-54	-1954-55	1955-56	1956-57	1957-58	1958-59	1959-60	1960-61
1. Burdwan	Yield Rainfall	935 47·7	949 50•2	1249 56•3	881 40•0	998 54•5	1028 62•5	1041 45·0	925 44•9	935 65•9	1183 50•9
2. Presidency	Yield Rainfall	677 68•4	769 71 • 1	976 73•4	$828 \\ 66 \cdot 1$	837 80•0	910 74•8	718 57•1	798 68•9	747 80 • 7	956 61•3

YIËLD TRËNDS OF RICË AND WHÉAT IN FIRST TWO FIVE-YEAR PLANS 3

TABLE XIV

Divisional vield lb. per acre of rice and annual rainfall in inches, Assam, Series II, 1951-52 to 1960-61

Livision	•	· ·			-	Year	· ,				
LIVISION	·	1951-52	1952-53	1953-54	1954-55	1955-56	1956-57	1957-58	1958 59	1959-60	1960-6
. Plains	Yield R ai nfall	829 98•2	893 108•3	910 96·2	929 95•7	878 107•3	905 98•2	883 100•2	-833 99•8	886 84•4	86ô .94• 5
			·		· .						
				T	ABLE XV	,					
Divisional	yield lb. per	acre of r	ice and an	nual rainf	all in inch	es, Madl	hya Prade	esh, Serie	s II, 1952	1-52 to 1	960-61
	yield lb. per	acre of r	ice and an	nual rainf	all in inch	es, Madi	·	esh, Serie.	s II, 195	1-52 to 1	960–61
Divisional	yield lb. per	acre of r	ice and an 1952-53	1953–54	all in inch 1954–55		·	esh, Serie. 1957-58	s II, 195 1958–59	1-52 to 1 1959-60	960–61
Division	yield lb. per Yield Rainf a ll	<u></u>				Year	· · _ · _ · _ · _ · _ · _ · _ · _	,,,,	 		
Division	Yield	1951–52 464	1952-53 380	1953-5 4 413	195455	Year 1955-56 560	1956-57	1957–58 242	1958–59 545	1959–60 517	1960- 6 449

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS Э

TABLE XVI

Divisional yield lb. per acre of rice and annual rainfall in inches, Bombay, Series II, 1951-52 to 1960-61

D1 1 1		• •	· · · · · ·		· ·		Year					•
Divisio	m	. –	1951–5 2	1952-53	1953-54	1954-55	1955-56	1956-57	1957-58	1958-59	1959-60	1960-61
Gujarat		ield ainfall	84 18•7	324 31•3	707 45•0	646 60•0	548 45•4	606 56•8	405 . £1•9	822 58•1	727 70•2	495 32•7
. Carnatio		ield airfall	792 35•7	707 39•4	823 64•9	966 51 • 5	$\begin{array}{c} 824\\ 38\cdot 7\end{array}$	988 50•7	$\substack{1194\\44\cdot9}$	1228 41•7	1346 54·0	1147 40•9
. Konkan		ield ainfall	929 114•9	1069 88•2	1289 124-8	$1155 \\ 140.0$	$1113 \\ 148 \cdot 2$	1040 1 39 • 4	1147 117•9	1343 157•0	1078 148•3	1129 118•9
. Deccan		ield ainfall	584 $22 \cdot 8$	566 21 • 1	652 26•7	676 29•4	776 37•7	7 53 4 4• 5	593 30•3	763 39•8	712 4 2 •2	782 37•4
Divisi	onal yie	ld lb. per			TAE Innual rain	BLE XVII		·		s II, 195	1–52 to 1	96061
		· · · ·			TAE	BLE XVII		hra Prade		s II, 195	1–52 <i>to</i> 1	96061
Divisi		· · · ·			TAE	BLE XVII	nes, Andi	hra Prade		s II, 195		
Divisio	on Y	· · · ·	acre of	rice and a	TAE Innual rain	BLE XVII fall in inch 1954-55 1295 49.8	nes, Andi Year	hra Prade	esh, Serie		1959-60	
Divisio	on Y R : Y	ld lb. per	<i>acre of</i> 1951–52 1092	rice and a	TAE Innual rain 1953-54 1181	BLE XVII fall in inch 1954–55 1295	nes, Andr Year 1955-56 1201	hra Prade 1956–57 1214	esh, Serie 1957–58	1958–59 1274	1959-60	1960-6 1267
	on Y R Y R Y Y	<i>ld lb. per</i> ield ainfall ield	acre of 1951-52 1092 37.8 485	rice and a 1952–53 1044 45:2 899	TAE mnual raim 1953-54 1181 35•8 910	BLE XVII fall in inch 1954–55 1295 49·8 963	nes, Andr Year 1955-56 1201 43•4 1102	hra Prade 1956-57 1214 50.6 1526	1957-58 1957-58 1212 37·1 1377	1958–59 1274 56•1 1272	1959-60 1251 46•0 1115	1960-6 1267 40 • 3 1181

TRENDS OF RICE AND WHEAT IN FIRST TWO FIVE-YEAR PLANS

YIËLD

TABLE	X۷	Ш
-------	----	---

Divisional yield lb. per acre of rice and annual rainfall in inches, Madras, Series II, 1951-52 to 1960-61

	·· ·	,	•			Year					
Division		195152	1952-53	1953-54	1954-55	1955-56	1958-57	1957-58	1958-59	195960	1960-61
. Carnatic	Yield Rainfall	923 35•6	950 30•1	1030 49•7	$\begin{array}{c}1070\\52\cdot7\end{array}$	1225 40•4	1160 45•7	$\frac{1127}{39\cdot 4}$	1115 37·0	1191 35•8	11 41 58•9
2. Central	Yield Rainfall	1101 27•4	1197 31 · 1	$\begin{array}{c} 1214 \\ 40 \cdot 9 \end{array}$	$1319 \\ 37 \cdot 7$	$1370 \\ 33 \cdot 5$	1438 42•4	$\begin{array}{c} 1403 \\ 30\cdot 7 \end{array}$	$\begin{array}{r}1216\\29\cdot 3\end{array}$	1209 27•5	1317 36•5
3. South	Yield Ra i nfall	910 31+0	903 26•9	$\begin{array}{c} 1078 \\ 42 \cdot 9 \end{array}$	$\begin{array}{c} 1190 \\ 42 \cdot 4 \end{array}$	$\begin{array}{c} 1089 \\ 37 \cdot 9 \end{array}$	$1263 \\ 35 \cdot 6$	$\begin{array}{r} 1249 \\ 46 \cdot 1 \end{array}$	1253 $28\cdot 3$	$1306 \\ 33 \cdot 6$	124 4 47•0
4. West coast	Yield Raiofall	767 116•0	777 99•3	789 _125•4	900 157•5	864 142•0	970 118•4	950 133•0	1114 128•9	1080 177•7	1084 146•7
,				TA	BLE XIX	•					÷.,
	· · · · · ·		<i>c</i> .						1051 50	1000	~
	nal yield lb	. per acre	of rice an	d annual r	ainfall in	inches, M	lysore, S	eries II,	1951–52	to 1960-	-61
Division	nal yield lb	. per acre	of rice an	d annual r	ainfall in	inches, M Year	1ysore, S	eries II,	1951–52	to 1960-	61
	nal yield lb	. per acre 	of rice an 1952–53	d annual r 1953–54	2ainfall in 1954–55		Aysore, S. 1956–57	eries II, 1957-58	1951–52 1958– 5 9	<i>to</i> 1960- 1959-60	-61 1960-61
Division	nal yield lb Yield Rainf a ll			· · · · · · · · · · · · · · · · · · ·		Year					

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

36.

TABLE XX

Divisional yield lb. per acre of wheat and annual rainfall in inches, Punjab, 1946-47 to 1960-61

T ! ! !	<u></u>	<u> </u>	, 					·;	Year			-			
Division	1946- 47	1947- 48	1948 49	1949 50	1950- 51	1951– 52	1952- 53	1953- 54	1954- 55	1955- 56	1956- 57	1957- 58	- 1958– 59	1959- 60	1960- 61
I. Ambala	4	890 28•1	936 24•8	1052 27•9	992 25•7	1053 14.8	1159 23·6	1054 26•7	1101 19•6	1023 23•4	1059 29•9	$1003 \\ 22 \cdot 7$	1034 33•8	941 21•6	1114 28•3
2. Jullundur	٠	733 45•3	836 37•2	961 36•9	843 45•8	796 23∙6	908 26•4	894 34•5	952 32·7	742 44•1	806 39•9	831 29•1	839 41-3	856 31·7	958 31·1
* No crop	cutting	survey	in 1946	47.				•		•					
						-	TABLE 🕽	XXI							
Divisio	onal yie	eld lb.	per act	re of w	heat an	d annua			iches. U	Ittar P	radesh.	19464	7 to 1	960-`61	
								Year	· · · ·						
Division	1946 - 47	19 4 7– 48	1948- 49	1949- 50	1950- 51	1951– 52	1952– 53		1954- 55	1955- 56	1956- 57	1957- 58	1958- 59	1959- 60	1980
. Meerut	558 34•6	763 30•3	737 38•8	866 30•2	914 41.8	886 25•7	839	942	877	698	710	737	768	854	1073
. Agra	691 25•1	676 29•6	727 29•6	842 37·0	763 26•5		30 ² 4 1109 28.0	$33 \cdot 4$ 842 21 \cdot 6	30.5 875 24.9	45·6 869 36·0	49•9 790 32•6	· 40 · 1 751 · 27 · 9	46.0 871 42.0	31 · 1 912 23 · 7	36·3 1073 39·7
. Rohilkhand	600 42•3	577 32•9	456 50•2	617 39•6	660 37•4	620 27•6	592 30·3	728 41 • 4	694 36•2	585 47.0	672 49•2	605 39•9	€2·0 640 53·7	23•7 704 ∵33•3	38.7 811 52.3
. Allahabad	602 28•5	732 ≦34•6	6 32 49•6	722 341 • 1	670 34•8	713 25•4	881 34•0	737 41·0	824 31 • 2	822 39•3	743	716	837	862 28•3	1009 46·
i. Jhansi	510 33•8	580 37•8	$\begin{array}{c} 633 \\ 42 \cdot 4 \end{array}$	678 33•3	718 29•6	509 33•2	597 36•5	610 36•2	867 33•9	784 36•7	824 37•5	605 · 31 · 3	890 41•4	827 29•5	1013 44·
Varanasi	619 49•7	681 _32•8		662 44•4	700 44•6	621* 31∙5	742 34∙8	740 48•0	$\begin{array}{c} 737 \\ 25 \cdot 4 \end{array}$	653 46•3	479 56∙9	465 35•3	575 37•4	721 32·4	733 36•1
Gorakhpur	818 46•7	761 44•5	488 57•9	789 46•9	64 4 38•2	597 32 •6	789 41•6	676 55•9	789 35•2	608 78•5	582 68•0	649 43•9	587 57•1	758 47•4	733 43 • 2
. Lucknow	685 32·3	701 42•7	536 42·1	602 46•5	753 33•3	609 23•3	750 34•2	682 45•8	703 42 • 4	570 51 • 1	764 39•5	642 35•8	641 44•4	588 26·4	785
. Faizabad	700 38•5	626 46 •0	418 51 • 3	564 45•4	665 33•7	532 26•8	750 36 •6	631 5 6 • 2	765 38•4	626 71•0	600	6 08 41•7	569 47-4	651	56.6 738 52-

* Calculated value in the absence of crop-cutting results.

TABLE XXII

Divisional yield lb. per acre of wheat and annual rainfall in inches, Bihar, 1946-47 to 1960-61

								Year							
Division	1946- 47	1947 48	1948– 49	1949- 50	1950–` 51	1951– 52	1952– 53	1953- 54	1954– 55	1955- 56	1956- 57	1957- 58	1958- 59	1959- 60	1960 61
1. Patna	409 58•1	448 35 • 7	373 57•5	505 42•2	455 41∙0	429 33•1	$\begin{array}{c} 622\\ 41\cdot 9\end{array}$	568 50•1	612 33•5	451 37•9-	238 52•3	542 30 • 7	632 40•9	527 41•8	643 38•5
2. Tirhut	523 49·2	702 46•5	593 52•5	$526 \\ 53 \cdot 3$	364 , 36•9	338 45 • 1	479 46•4	629 76•4	511 4 0 •9	600 56•2	$\begin{array}{c} 297 \\ 60 \cdot 2 \end{array}$	516 $38 \cdot 1$	621 51·6	502 39•4	52 2 4 6 •0
3. Bhagalpur	531 43•6	618 45•5	581 56•0	408 62•3	318 50•0	404 46•8	$552 \\ 46.5$	$\substack{488\\61\cdot 1}$	$\begin{array}{c} 675 \\ 46 \cdot 0 \end{array}$	$612 \\ 54 \cdot 6$	121 69•9	446 35 • 3	683 51•5	398 52+5	653 54•5

TABLE XXIII

Divisional yield lb. per acre of wheat and annual rainfall in inches, Madhya Pradesh, 1946-47 to 1960-61

								Year							
Division	1946- 47	19 4 7– 48	1948- 49	1949 50	1950- 51	1951– 52	1952- 53	1953– 54	1954- 55	1955- 56	1956– 57	1957- 58	1958- 59	1959- 60	1960- 61
1. Jabulpur	$\frac{118}{62 \cdot 5}$	378 71 • 6	625 61•0	516` 51•1	681 47.5	451 37•5	509 49•2	549 40•4	678 48•2	535 56•0	460 65•6	324 34•7	592 48•8	637 58•8	563 49•6
2. Nagpur	63 46•3	280 47•7	448 47•6	399 53•3	$\begin{array}{c} 512\\ 31 \cdot 6 \end{array}$	470 39•8	458 25•0	$456 \\ 43 \cdot 6$	$511 \\ 49 \cdot 3$	434 57•1	$378 \\ 46.6$	276 28•0	483 47•2	51 0 59•0	419 33•8
3. Chattisgarh	110 57.0	226 62•5	405 54•4	377 52•5	$340 \\ 45 \cdot 0$	$390 \\ 45 \cdot 5$	$462 \\ 44 \cdot 5$	412 45•4	464 43•0	$491 \\ 54 \cdot 3$	270 58•9	251 39•3	333 56•8	446 64•7	337 50•6
4. Berar	17 40·1	282 35·6	344 40•0	353 48•0	410 26•8	368 27•4	$246 \\ 24 \cdot 3$	$322 \\ 32 \cdot 9$	388 36•0	438 43•2	457 35• 3	214 11•3	483 36•0	396 5 3•5	358 27•4

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

TABLE XXIV

Divisional yield lb. per acre of wheat and annual rainfall in inches, Bombay, 1946-47 to 1960-61

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Division	1946 47	1947– 48	1948 • 49	1949- 50	1950- 51	$\begin{array}{r} 1951 - \\ 52 \end{array}$	1952- 53	1953- 54	1954 55	1955- 56	1956 57	1957- 58	$\begin{array}{r} 1958 \\ 59 \end{array}$	- 195 60	-	1960- 61 -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. Guj a rat																360 19•9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. Deccan	28	316	299	376	347	274	192	369	375	406						356 28•5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3. Carnatic	21	170	58	192	194	146	186	230	259	273	223	234	207	213	:	229 30•7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		·					,	Fable 3	XV								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ave	erage y	vield lb	. per a	cre of	rice in d	lifferent	states,	Series	<i>I</i> , 194	6-47 ta	» 1960-	-61			
. Othar Fradesh 515 501 600 111 111 111 611 100 501 600 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111		Ave	erage y	vield lb	. per a	cre of a	rice in d	lifferent		Series	<i>I</i> , 194	6-47 to	> 1960-	-61			
Bihar (W)696669 036 618 405 511 640 790 515 676 704 440 828 740 816 West Bengal 819 816 791 337 902 826 873 1130 858 927 977 902 870 852 108 Assam (W)* 979 989 926 825 898 968 939 1017 881 956 882 910 1038 936 Madhya Pradesh 728 758 686 750 435 663 647 659 659 776 861 569 842 779 836 Bombay 982 924 911 823 851 674 810 1059 980 910 933 936 1211 1063 956 Andhra Pradesh 1011 1043 1062 867 1070 1048 1067 1208 1289 1215 1279 1280 1302 1275 1366 Madras 868 882 893 822 941 960 920 1009 1123 1115 1195 1174 1139 1208 1208	State	1946-	· 1947	7- 194	3- 1949)- 195	0- 193]	I- 19 52	Year 2- 1953	- 195	4- 19:	5- 198	56- 19	57-			1960- 61
West Beight 010 010 101 003 93 93 0017 881 956 882 910 1038 93 <td></td> <td>1946- 47</td> <td>- 1947 - 48</td> <td>7 194 49</td> <td>3- 1949 50</td> <td>)– 195 5</td> <td>0- 195) 1 55</td> <td>1— 1952 2 53</td> <td>Year 2~ 1953 3 54</td> <td>- 195 58</td> <td>4- 198 5 5</td> <td>5 198 6 5</td> <td>56 19 7 {</td> <td>57 58</td> <td>59</td> <td>60</td> <td></td>		1946- 47	- 1947 - 48	7 194 4 9	3- 1 9 49 50)– 195 5	0- 195) 1 55	1— 1952 2 53	Year 2~ 1953 3 54	- 195 58	4- 198 5 5	5 198 6 5	56 19 7 {	57 58	59	60	
Ardsam (W) 010	Uttar Pradesh	1946- 47 513 -	- 1947 48 551	7- 194 49 60	3- 1949 50 8 47	9- 195 5 7 41	0- 195] 1 55 7. 34'	1	Year 2- 1953 3 54 535	- 195 50	4- 198 5 5 1 59	55 198 6 5 0 49 6 70	56 19 7 5 3 49 4 44	57- 58 34 10	59 621 828	60 481 740	61 626 817
Mathya Patesh 123 136 <	Uttar Pradesh Bihar (W)	1946- 47 513 696	- 1947 - 48 - 551 - 669	7	$ \begin{array}{r} 3- 1945 \\ 50 \\ 3 $	9- 195 5 7 41 8 40 7 90	0- 195) 1 5: 7. 34' 5 511 2 820	1	Year 2 1953 3 54 8 535 9 790 3 1130	- 195 50 51 85	4– 198 5 5 1 59 5 67 8 92	55 198 6 5 0 49 6 70 7 97	56 19 7 8 93 49 94 44 97 90	57	59 621 828 870	60 481 740 852	61 626 817 1083
Andbra Pradesh 1011 1043 1062 867 1070 1048 1067 1208 1289 1215 1279 1280 1302 1275 130 Madras 868 882 893 822 941 960 920 1009 1123 1115 1195 1174 1139 1208 1208	Uttar Pradesh Bihar (W) West Bengal	1946- 47 513 696 819	- 1947 48 551 669 816	7 194 49 60 63 79	$3-1945 \\ 50 \\ 3 47 \\ 6 615 \\ 1 83$	9- 195 5 7 41 3 40 7 90 6 82	0 - 1931 1 5: 7. 34' 5 511 2 82 5 899	1	Year 2 1953 3 54 3 535 0 790 3 1130 3 939	- 195 50 51 85 101	4– 198 5 5 1 59 5 67 8 92 7 88	55 195 6 5 0 49 6 70 7 97 1 95	56- 19 7 5 13 49 14 44 17 90 16 88	57- 58 34 10 32 32	59 621 828 870 910	60 481 740 852 038	61 626 817 1083 933
Madras 868 882 893 822 941 960 920 1009 1123 1115 1174 1139 1208 120	Uttar Pradesh Bihar (W) West Bengal Assam (W)	1946- 47 513 696 819 * *	- 1947 48 551 669 816 979 758	7- 1944 49 603 63 79 98 68	B- 1949 50 3 47 6 619 1 83 9 92 6 75	- 195 7 41 8 40 7 90 6 82 0 43	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Year 2- 1953 3 54 3 535 0 790 3 1130 3 939 7 659	- 195 50 51 85 101 655	$\begin{array}{c} 4 - & 19t \\ 5 & 5 \\ 1 & 59 \\ 5 & 67 \\ 8 & 92 \\ 7 & 88 \\ 9 & 77 \end{array}$	55 198 6 5 0 49 6 70 7 97 1 95 6 86	56- 19 7 5 13 49 14 44 17 90 16 88 11 50	57	59 621 828 870 910 842	60 481 740 852 038 779	61 626 817 1083 933 837
	Uttar Pradesh Bihar (W) West Bengal Assam (W) Madhya Pradesh Bombay	1946- 47 513 696 819 * 728 982	- 1947 48 551 669 816 979 758 924	7- 1944 49 600 63 79 98 68 68 91	B- 1949 50 8 47 6 619 1 83 9 92 6 75 1 82	- 195 7 41 8 40 7 90 6 82 0 43 3 85	$\begin{array}{c} 0 - & 195 \\ 1 & 5 \\ 5 & 511 \\ 2 & 82 \\ 5 & 89 \\ 5 & 66 \\ 1 & 67 \end{array}$	1- 1952 2 53 7 433 4 640 3 873 3 965 3 647 4 810	Year 2 1952 3 54 3 535 0 790 3 1130 3 939 7 659 0 1059	- 195 50 51 85 101 65 98	$\begin{array}{c} 4 - & 19t \\ 5 & 5 \\ 5 & 67 \\ 8 & 92 \\ 7 & 88 \\ 9 & 77 \\ 0 & 91 \end{array}$	55- 195 6 5 0 49 6 70 7 97 1 95 6 86 0 93	56 19 7 5 44 44 7 90 66 88 11 50 33 93	57	59 621 828 870 910 842 1211	60 481 740 852 038 779 063	61 626 817 1083 933 837 92 2
Combined 769 786 775 721 646 683 740 879 781 840 875 757 900 854 98	Uttar Pradesh Bihar (W) West Bengal Assam (W) Madhya Pradesh Bombay Andhra Pradesh	1946- 47 513 696 819 * 728 982 1011	- 1947 48 551 669 816 979 758 924 1043	7	3- 1949 50 3 47 6 619 1 83 9 92 6 75 1 82 2 86	9- 195 5 7 41 8 40 7 90 6 82 0 43 3 86 7 107	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1- 1952 2 53 7 433 4 640 3 873 3 647 4 810 3 1067	Year 2- 1953 3 54 3 535 0 790 3 1130 3 939 7 659 0 1059 7 1208	- 1955 500 511 855 101 655 986 8128	4-195 5 5 1 59 5 67 8 92 7 88 9 77 0 91 9 121	55-195 65-195 65-5 70 797 195 686 093 5127	56- 19 17 8 13 41 14 44 17 90 16 88 11 56 13 91 13 91 19 125	57	59 621 828 870 910 842 1211 1302	60 481 740 852 038 779 063 275	61 626 817 1083 933 837 92 2 1304

* No crop-cutting survey in 1946-47. (W), Winter rice.

~

TABLE XXVI

Υ.

a .					Ye	ar			•	
State	1951-52	1952-53	195354	1954-55	1955-56	1956-57	195758	1958-59	1959-60	19606
1. Uttar Pradesh	343	432	530	496	584	494	495	622	487	626
2. Bibar	493	609	753	500	651	671	434	785	707	788
3. West Bengal	826	873	1130	858	927	977	902	870	852	1083
4. Assam	829	893	910	929	878	905	883	833	886	866
5. Madhya Pradesh	663	647	659	659	776	861	569	842	779	837
6. Bombay	605	718	953	904	849	862	857	1094	973	891
7. Andhra Pradesh	944	950	1080	1150	1072	1113 `´	1133	1 21 6	1178	1179
8. Madras	907	928	1031	1129	1126	1217	1191	1187	1215	1203
9. Mysore	1032	881	1100	1057	1216	1128	1205	1295	1406	1328
10. Combined (All-India)	670	726	866	777	833	864	764	899	848	920

Average yield lb. per acre of rice in different states, Series II, 1951-52 to 1960-61

TABLE XXVII

Average yield lb. per acre of wheat in different states, 1946-47 to 1960-61

								Year		/					
State	1946- 47	1947- 48	1948- 49	1949- 50	1950- 51	1 9 91- 52	1952– 53	195 3 - 54	1954 55	1955- 56	1956- 57	1957– 58	1958- 59	1959– 6 0	1960- 61
1. Punjab	, *	773	864	989	886	871	981	941	999	839	894	892	908	887	1012
2. Uttar Pradesh	642	674	566	703	729	661	770	741	790	682	702	653	712	758	899
3. Bihar	483	583	507	488	389	389	557	568	604	545	218	510	641	488	606
4. Madhya Pradesh	89	327	526	453	576	441	462	486	580	493	422	293	528	560	482
5. Bombay	83	289	168	307	287	217	207	319	338	347	243	261	345	312	304
6. Combined (All-India)	44 0	604	577	655	662	610	694	687	745	642	609	600	688	694	781

* No crop-cutting survey in 1946-47.

TABLE XXVIII

Analysis of variance of annual divisional yields per acre of rice in different states, Series I

	•				(Mean squares i	Between)				
	-	Pre-I	Plan, 1st Plan a	nd 2nd Pla	n	lst Plan a	v. Pre-Plan			2nd Plan 7. 1st	Plan	
	State	Degrees of freedom	Mean Square Component (a)	Significan against compone	of	Mean Squ	່ ິຊ	ificance gainst nponent	Degrees of freedom	Mean Square	aga	ficance ainst ponent
		·	~	(b)	(e)		(6)	(e)		•	(b)	(e)
1.2.3.4.	Uttar Pradesh Bihar West Bengal Assam Madhya Pradesh	2 2 2 2 2 2	$102581 \\ 59251 \\ 27745 \\ 234 \\ 17587$	*	$\begin{array}{cccc} \uparrow & 1 \\ \uparrow & 1 \\ \uparrow & 1 \\ \uparrow & 1 \\ & 1 \\ + & 1 \\ \end{array}$	18436 1690 34694 262 1920	·	*	1 1 1 1	19 5 465 75864 1008 26 18501	*	† †
5. 6. 7. 8.	Bombay Andhra Pradesh	2 2 2 2	190716 422216 409041	`† †	1 1 1 1 1 1 1 1 1	1920 1442 115072 220522	† †	· † †	1 1 1	305626 324896 188925	* † †	† † †
			Individual year	s within per	iods	 Di	visions	Interact	on of divi with	sions Interact	on of with	
	9 4.4.4	Re	sidual‡	3	Total				period	indi	vidual	years
	8tate -	Degrees of freedom	Mean Square Component (b)	Degrees of freedom	Mean Square Component (b)	Degrees of freedom	Meen Squa Compone (c)		Mean So Compo n (a	onent of	Co	n Squar mponent (e)
1.2.3.4.5.6.7.8.	West Bengal Assam Madhya Pradesh	9 9 8 9 9 9 9 9	23071† 59714† 19583 4357 36849† 47379 8675 6493	12 12 11 11 12 12 12 12 12	37079 70231 16399† 3907 41370 45936° 21813 14025	6 3 1 2 2 2 3	86404 131920 172673 373404 1002004 188809 221131	t 6 t 2 t 4 t 4 t 4 t 4	182 182 115 53 546 479 174	19† 36 31 12 . 11 39 24 42 24 69* 24	19	5683 3304 3764 3907 2145 9721 4180 6128

§ One less due to fitted value. .

TABLE XXIX

Analysis of variance of annual divisional yields per acre of rice in different States, Series II (Mean squares of component variation)

	(9	Between nd Plan v.		n)	Indivi	dual year	rs within I	periods			Interac		Interac	
		alu I lan 0.	ISC F18		Resi	dual‡	т	otal	- Div	isions		isions periods	div i sior i ndividu	ns with Lal years
State	Degrees of freedom			icance inst onent	Degrees of freedom	Square Compo-	Degrees of freedom	Square Compo-	Degrees of freedom	Square Compo-	Degrees of freedom	Mean Square Compo-	Degrees of freedom	Square
		(a)	(b)	(e)	_	$\binom{b}{b}$	· ·	nent (<i>ò</i>)		nent (c)		$\binom{nent}{d}$		nent (e)
1. Uttar Pradesh	1	200037	*	†	6	22140	8	39403	6	76766†	6	29246†	478	< 5 223
2. Bihar	1	70057		t	, 6	66670	8	65 195	3	47433†	3	14201*	24	2347
3. West Bengal	1	1008			6	28705	8	23383	i	182023†	1	168	8	3693
4. Assam	. 1	436			6	1057	8	1088	••	· • •	••		8	1088
5. Madhya Pradesh	1 ·	18501		*	6•	32395	8	27386	2	279696†	2	7650	16	2 260
6. Bombay	1,	235316	۰.	_· †	6	30331	8	44898	3	752291†	3	52199*	24	12299
7. Andhra Pradesh	1	451350	Ť	t	6	9014	8	26316	3	510406†	3	57833*	24	15203
8. Madras	1	250272	†	†	6	1384	8	18241	3	2089,34†	3	15124*	. 24	4327
9. Mysore	1	97022	*	Ť	6	13942	8	30798	1	657031†	1	94806†	8	4657

* Significant at 5%. † Significant at 1%, ‡ Residual mean square after fitting linear trend to annual values within each period. § 1 d.f. less due to fitted value.

		Pre-plan period	1st plan period	2nd plan period	Diffe	rence	S.E.	1st Plan	e of yield of over pre-plan essed as	2nd Plan of	of yield of ver 1st Plan ssed as
	State ()		(1951–52 to 1955–56)		(1st Plan pre-plan)	(2nd Plan 1st plan)	of difference	% increase	Average % increase/ year	% incr e ase	Average % increase/ year
 Bil Bil W As As Mail Bo Bo Bo An An Mail 	tar Pradesh har est Bengal sam adhya Pradesh mbay ndhra Pradesh adras ombined (All-India)	513 605 833 930 671 891 1009 881 743	480 626 922 941 681 886 1164 1024 783	543 705 936 944 778 1013 1286 1184 863	(-) 33 21 89 11 10 (-) 5 155 143 40	63 79 14 3 97 127 122 160 80	21 18 28 42 24 57 64 27 11	$\begin{array}{c} (-) & 6 \cdot 4 \\ & 3 \cdot 5 \\ & 10 \cdot 7 \\ & 1 \cdot 2 \\ & 1 \cdot 5 \\ (-) & 0 \cdot 6 \\ & 15 \cdot 4 \\ & 16 \cdot 2 \\ & 5 \cdot 4 \end{array}$	$(-)1 \cdot 3 \\ 0 \cdot 7 \\ 2 \cdot 1 \\ 0 \cdot 2 \\ 0 \cdot 3 \\ (-)0 \cdot 1 \\ 3 \cdot 1 \\ 3 \cdot 2 \\ 1 \cdot 1 \\ \end{cases}$	$13 \cdot 1 \\ 12 \cdot 6 \\ 1 \cdot 5 \\ 0 \cdot 3 \\ 14 \cdot 2 \\ 14 \cdot 3 \\ 10 \cdot 5 \\ 15 \cdot 6 \\ 10 \cdot 2 \\ 10 $	2.6 2.5 0.3 0.1 2.8 2.9 2.1 3.1 2.0
						373737					
	Average yield	lst Pl	acre of ri an period to 1955-56	2nd Plan	period	E XXXI s for First Difference Plan-1st Pla	St	d Second andard error of ference	Plan perio Difference as % of yie in Ist Plan peri	e eld Av inc	yerage % rease/year

TABLE XXX Average yield lb. per acre of rice in different states for pre-plan, First Plan and Second Plan periods, Series I

YIELD TRENDS OF RICE AND WHEAT IN FIRST TWO FIVE-YEAR PLANS

.43

	Average yie	ld of rice	, annual		LE XXXII and area		irrigated	in differe	nt states	1999) 1990 1990 1990 1990 1990 1990
· · · · · · · · · · · · · · · · · · ·			Pre-Plan			İst Plan		2ne	d Plan	C.V.
State	Division	Average yield/acre (lb.)	Average rainfall (in.)	% area irrigated	Average yield/acre (lb.)	Average rainfall (in.)	% area irrigated	Average yield/acre (lb.)	Average rainfall (in.)	- (Between years and within period) (%)
			· · ·	, · ·			1			
1. Andhra Pradesh	Circar Carnatic Central	1034 798 1064	40 • 4 36 • 0 32 • 5	94•0 96•2 93•0	1205 872 1191	42 • 4 31 • 0 31 • 3	94 • 1 98 • 3 93 • 3	1283 1294 1314	45 • 5 40 • 3 31 • 3	••
	State	1009	39.5	94.2	1164	40•3	94.7	1286	44.1	13.2 (8.3)
2. Assam	Plains	930	93.3	25.3	941	94.7	32.5	944	92.0	6.7 (7.0)
3. Bihar	Patna Tirhut Bhagalpur Chota Nagpur	541 512 569 807	45 • 3 48 • 6 53 • 4 55 • 8	88•2 10•3 28•8 7•7	590 5 32 609 75 1	39.0 54.8 56.8 52.2	74•2 9•0 20•9 10•8	771 589 714 756	40`8 48•2 55•4 51•8	••
,	State	605	51.1	31.1	626	50.2	27.9	705	49.0	41.1 (37.9)
6. Bombay	Gujarat Carnatic Konkan	617 893 1014	35 • 2 45 • 0 108 • 1	2·7 42·0 3·0	511 861 1111	41 · 3 48 · 4 123 · 1	5·9 37·0 4·1	689. 1253 1147	51 • 2 35 • 2 136 • 3	î
	State	891	79•0	9•1	886	86.0	9.9	1012	94 •5.	23.8 (24.2)
5. Madhya Pradesh	Jabalpur Nagpur Chattisgarh	471 732 686	62•0 48•5 56•6	4.7 44.0 22.9	466 776 694	48 • 8 49 • 2 46 • 5	5•4 42•4 22•9	490 789 807	57.6 58.2 54.7	मुख्य स्वर हेल् स्वर इस्ट हे
	State	671	56.4	23.2	681	46.9	23.1	778	55.3	31.0 (29.2)

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

. Madras	Carnatic	784	40.9	78•7	1031	4l • 7	83.2	1146	$43 \cdot 4$	••
•	Central	1048	$33 \cdot 1$	86•9	1218	34.5	93.1	1247	33.3	••
	South	917	35.6	94.6	1064	36.2	94.7	1257	$38 \cdot 1$	·
	West Coast	797	137-9	0	828	128.1	0	1040	141 • 1	••
	State	881	81.1	67•4	1024	59.2	69 • 3	1184	61.5	11.5 (7.8)
. Uttar Pradesh	Meerut	628	38.4	60.0	553	35.6	57.5	859	45.7	
	Rohilkhand	506	41.8	16-1	461	39•4	16.9	649	50.9	••
•	Allahabad	591	38.6	17.9	592	38.5	20.7	, 654	38.1	••
	Gorakhpur	546	46.0	10.7	469	48.6	10.9	486	51.1	••
S	Lucknow	482	39.7	0.7	505	39.7	0.7	564	40 •0	• •
	Faizabad	471	41.7	8.6	469	46.1	8.1	475	44.7	••
	Varanasi	486	47.2	0.7	434	37.2	0.5	535	39.6	••
	State	513	43·2	9.2	480	43.1	9.9	543	44.9	35.4 (27.9)
B. West Bengal	Burdwan	863	55.7	31.6	1002	49.7	36.9	1022	53.8	
-	Presidency	790	70.5	7.9	817	71.8	11.0	826	68 • 6	•• ′
ł	State	833	61.8	21.8	922	59.2	25.7	. 936	60.3	I4·4 (15·8)
Mysore(10 years)	Mysore	••		••	1108	48.9	91.8	1385	56.5	
	Bangalore	••			883	27.1	93.2	885	28.9	· • •
-	State	•••	••		1057	43.9	92.1	1271	50.2	16.5 (11.1)

* Figures in brackets are for coefficient of variation calculated from residual mean squares after eliminating linear trend within periods.

£.

.....

¥.

TABLE XXXIII

			Regression based on	actual rainfall	Regression based on deviatio	n from normal rainfa
State			Components of mean square for uncontrolled variation ‡	Regression coefficient	Components of mean square for uncontrolled variation ‡	Regression coefficient
. Uttar Pradesh		Linear	29103*	16.52	28699*	5•60
· Ottal Pratosa ·	••	Quadratic Residual	28521* 5012	-0.13	3051 2 * 4989	-0.18
. Bihar	••	Linear Quadratic Residual	9436 3692 3112	$11 \cdot 47$ (-) $0 \cdot 08$	14167* 11798* 2735	4•12 (-) 0·21
. West Bengal	••	Linear Quadratic Residual	21440* 245 2348	9·38 0·03	23513† 1410 2024	$(-) \begin{array}{c} 13 \cdot 20 \\ 0 \cdot 17 \end{array}$
. Assam	• •	Linear Quadratic Residual	2749 253 4442	8·57 ⟨-) 0·04	2648 2 4481	$(-) \begin{array}{c} 1 \cdot 51 \\ 0 \cdot 004 \end{array}$
. Madhya Pradesh	••	Linear Quadratic Residual	1992 120 2244	$(-) \begin{array}{c} 2 \cdot 92 \\ 0 \cdot 02 \end{array}$	2072 129 2240	$(-) \begin{array}{c} 1 \cdot 21 \\ 0 \cdot 02 \end{array}$
. Bombay	••*	Linear Quadratic Residual	12939100702*16348	$\langle - \rangle 0.05$	12540 155992† \13853	5·90 (-) 0·21
. Andhra	••	Linear Quadratic Kesidual	11945 782 14891	⟨−⟩ 0.06 2.95	11612 394 14924	2.62 0.05
, Madras	••	Linear Quadratic Residual	2547 1097 6381	⟨−) 0·48 0·01	2187 9726 6138	$(-) \begin{array}{c} 0.47 \\ 0.07 \end{array}$
. Mysore (10 years)	••	Linear Quadratic Residual	7956 48 4875	7.80 (-) 0.02	5464 910 5147	7·76 (-) 0·18

Analysis of regression and regression coefficients of yield of rice on rainfall

‡ Components (e) in Tables XXVIII and XXIX.

t

* Significant at 5%.

† Significant at 1%.

1

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

36 73 951 8 947 9774 85 1020 116 1271 111 1185 161 1242 165 864 71 860 80		(-) 9 35 133 8 22 14 143 143		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(-)_{13}$ 598 $(-)_{13}$ 832 121 935 1 668 21 841 13 998 133 881 13 146 -737 52		400 626 922 941 941 3 678 97 886 127 1164 122 1024 160 1057 214 783 80	$\begin{array}{c} \mathbf{y}_{10} \\ \mathbf{y}_{10} \\ \mathbf{y}_{10} \\ \mathbf{y}_{20} \\ \mathbf{y}_{20} \\ \mathbf{y}_{20} \\ \mathbf{y}_{20} \\ \mathbf{y}_{21} \\$	 Ottar Fracesn Bihar West Bengal Assam Madhya Pradesh Bombay Andhra Pradesh Madras Madras Mayore (10 years) Combined (All India) Series I Series II
lan 2nd Plan 538	1st Plan 502	Pre-Plan	2nd Plan 531	1st Plan	Pre-Plan	2nd Plan	1st Plan	Pre-Plan	State
for regression on devia- from normal minfall	regress n norma	Adjusted for tion fron	i	Adjusted for regression on actual rainfall	Adjusted f		Unadjusted		

TABLE XXXIV

TABLE XXXV

Analysis of variance of annual divisional yields per acre of wheat in different states (Mean squares for component variation)

					1	Betwee	n periods					
State	Pre-p	lan, 1st Plan	and 2nd	Plan		lst Plan	v. pre-Plan			2nd Pl	an v. 1st	Plan
State	Degrees of ' freedom	Mean Square Compo- nent —	Signific again Compo	st	Degrees of freedom	Mean Square	Significa agains Compor	st	Degrees of freedom	Mean Squar	3	gnificance against omponent
·		(a)	(b)	(e)	-		(6)	(e)	-		(b)	(e)
1. Punjab	2	8813		*	1	17542		†	- 1	2952		
2. Uttar Pradesh	2	74120		†	1	99867		t	ī	1054		
3. Bihar	2	8614			1	12649		•	· 1	13188		
4. Madhya Pradesh	$\frac{2}{2}$	58548		Ť	1	115348		Ť	1	17851	•,	*
5. Bombay	-	16704			1	26940		<u>†</u>	1	154		
1		Individual yea	rs within	perio	ds'	, D:-	visions	Intera	ction of di [.] wi t h	visions		n of divisio
State	Re	esidual‡	ч	Tota	al	DI	ISIONS		periods			with Juals years
, . State	Degrees	Mean	Degre	es	Mean.	Degrees	Mean	Degr	ees M	ean	Degrees	Mean
	of	Square	\mathbf{of}		Square	\mathbf{of}	Square	. o	Sq	uare	of	Square
	freedom	Component	freed	om (Component	freedom	Component	freed	om Com	onent	freedom	Componen
1. Punjab	8	(b)			(<i>b</i>)		(c)			d)		(e)
2. Uttar Pradesh	9	9667 32033	11 12		8687 47610	1	215777†	2		068	11	1497
3. Bihar	ğ	26627	12		40209	8 2 ·	92577†	16		820*	9 5 ç	5641
4. Madhya Pradesh	ğ	22206	12		40203 50028	3	1430 87613†	4		783 882	24	6277
5. Bombay	ğ	8666	12		14139	$\frac{3}{2}$	84733†	4	-	582 157	$\frac{36}{24}$	2973 3303

48 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

TABLE XXXVI

Average yield lb. per acre of wheat in different states for pre-plan, first plan and second plan periods

		Let Diese		Diff	erence			e of yield of		of yield of
State	Pre-Plan period (1946-47 to	1st Pl a n period (1951–52 to	2nd Plan period (1956-57 to		2nd Plan	S.E. of		over pre-Plan essed as		over 1st Plan sed as
	(1940-47 10	(1951–52 to 1955–56)	1960-61)		Ist Plan	lifference	% increase	Average % increase/year	% increase	Average % increase/year
1. Punjab	879	925	919	46	(-) 6	20	5.2	1.0	(-)0 ·6	(-)0.1
2. Uttar Pradesh	6 6 1	729	745	68	. 16	17	10-3	2•1	2.2	0•4
3. Bihar	488	531	494	43	(-)37	30	8.8	1.8	(-)7.0	(-)1.4
4. Madhya Pradesh	394	493	457	99	(-)36	21	$25 \cdot 1$	5•0 .	(-)7-3	(-)1.5
5. Bombay	225	286	293	61	7	22	$27 \cdot 1$	5•4	2•4	0.5
6. Combined (All-India)	604	675	6 76	71	, 1	10	11.8	2•4	. 0-1	0.02

Figures in brackets are for coefficient of variation calculated from residual mean squares after eliminating linear trend within periods.

	r agpur Chattisgarh Berar State Gujarat	Madhya Pradesh	Varanasi Gorakhpur Lucknow Faizabad State l'atna	2. jUttar Pradesh Meerut Agra Rohilkhand Allahabad Jhansi	
273 127	292 292 394 312	491 464	438 438	8 / 9 768 582 672	
28 · 1 33 · 3	5255 5299 5255 5295 5555 5555 5555 5555	47-7 58-4 58-8	47-4 39-4 38-9 46-9	35-1 37-5 35-1 37-5 4	41.3
19-1 1-6	11.03 1.05 20 20 20 20 20 20 20 20 20 20 20 20 20	19.3 5.7 1.8	46 • 1 75 • 9 37 • 4 59 • 2 50 • 3 47 • 7	59.0 26.2 3.0	51.6
323 219	466 444 352 350	511 546 544	699 663 729 536	925 848 795 673	858
22.5 36.8	46. 46. 43. 90. 90. 90.	53•2 51•0 47•4	37.2 48.6 39.4 37.2 37.2 37.2	33 36 55 1 35 5 5 5 1 35 5 5 5 1	32.3
23·7 1·7	15-7	10.0 3.6 2.4	42.0 78.6 40.2 51.5 28.2	60.7 85.1 66.1 22.0	52•4
364 221	413 327 457 293	492 494 515	595 662 516 516	828 978 978 978 978 978	41030 858
31.3 31.3	42.9 32.7 47.5 26.2	47.1 52.7 51.5	39 - 3 40 - 5 40 - 5 40 - 5 40 - 5	36-9	34.6
:::	 55•7 (37•1)	 39•8 (32•4) 	 30•7 (25•2)	(10.4) 	

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATICS.

0Ş